Seawater Corrosion Resistance of Zr-Ti Combined Deoxidized Martensitic Stainless Steel
Abstract
1. Introduction
2. Experimental Materials and Methods
3. Result
3.1. The Formation of Complex Inclusions
3.2. Corrosion-Active Inclusions
3.3. Potentiostatic Polarization
3.4. Electrochemical Impedance Spectroscopy (EIS) Testing
3.5. Potentiodynamic Polarization
3.6. Localized Corrosion Experiment
4. Discussion
4.1. The Effect of Composite Deoxidation on Inclusion Formation in Steel
4.2. The Effect of Composite Microalloying on Localized Corrosion of Martensitic Stainless Steel
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, L.T. The evaluation guide of energy consumption per unit product of laterite nickel ore stainless steel. In Proceedings of the 17th China Standardization Forum, Fuzhou, China, 19–20 November 2020; pp. 704–707. [Google Scholar]
- Pintowantoro, S.; Abdul, F. Selective reduction of laterite nickel ore. Mater. Trans. 2019, 60, 2245–2254. [Google Scholar] [CrossRef]
- Zhang, S.L. 3Cr13 steel and 4Cr13 steel. Steel Technol. Mag. 2020, 26, 21. [Google Scholar]
- Hu, X.; Wang, L.; Fang, F.; Ma, Z.; Xie, Z.H.; Jiang, J. Origin mechanism of torsion fracture in cold drawn pearlitic steel. J. Mater. Sci. 2013, 48, 5528–5535. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, H.Q.; Zhang, L.; Wu, X. Effect of carbon content on continuous cooling transition of Cr-Mo-V die steel. Mater. Rev. 2019, 33, 386–391. [Google Scholar]
- Yu, Q.B.; Zhang, Z.B.; Li, Z.L. Effect of Nb on austenite grain growth of low carbon steel. IronSteel 2006, 41, 70–74. [Google Scholar]
- Yang, C.F.; Wu, Q.H.; Chen, Y.; Wang, H.M.; Yang, Z.M. Effect of Niobium on phase transformation and pearlite lamellae spacing of high carbon steel during continuous cooling. Mater. Mech. Eng. 2013, 37, 15–19. [Google Scholar]
- Fong, H.S. Determining true pearlite lamellar spacing from observed apparent spacing. Metallography 1989, 23, 173–188. [Google Scholar] [CrossRef]
- Yuan, C.W.; Huang, J.J.; Li, S.C.; Dian, X.Z.; Liu, S.C. Effect of die and temperature on microstructure and properties of 1500 MPa class hot formed steel. Nonferr. Met. Sci. Eng. 2020, 11, 37–43. [Google Scholar]
- Bao, S.; Liu, R.P.; Wang, B.S.; Wu, M.; Luo, Y.; Feng, H.; Song, Z. Effect of cerium on low temperature impact performance of S32750 super duplex stainless steel. Heat. Treat. Met. 2021, 46, 42–47. [Google Scholar]
- Zhang, X.; Xiao, K.; Dong, C.; Wu, J.; Li, X.; Huang, Y. In situ raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42−. Eng. Fail. Anal. 2011, 18, 1981–1989. [Google Scholar] [CrossRef]
- de la Fuente, D.; Díaz, I.; Simancas, J.; Chico, B.; Morcillo, M. Long-term atmospheric corrosion of mild steel. Corros. Sci. 2011, 53, 604–617. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Jeong, Y.-S.; Kim, I.-T.; Jeon, S.-H.; Park, C.-H. A method for estimating time-dependent corrosion depth of carbon and weathering steel using an atmospheric corrosion monitor sensor. Sensors 2019, 19, 1416. [Google Scholar] [CrossRef]
- Dunnwald, J.; Otto, A. An investigation of phase transitions in rust layers using raman spectroscopy. J. Cheminformatics. 1989, 29, 1167–1176. [Google Scholar] [CrossRef]
- Krawiec, H.; Vignal, V.; Heintz, O.; Oltra, R. Influence of the dissolution of MnS inclusions under free corrosion and potentiostatic conditions on the composition of passive films and the electrochemical behaviour of stainless steels. Electrochim. Acta 2006, 51, 3235–3243. [Google Scholar] [CrossRef]
- Krawiec, H.; Vignal, V.; Oltra, R. Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions. Electrochem. Commun. 2004, 6, 655–660. [Google Scholar] [CrossRef]
- Williams, D.E.; Kilburn, M.R.; Cliff, J.; Waterhouse, G.I. Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion. Corros. Sci. 2010, 52, 3702–3716. [Google Scholar] [CrossRef]
- Wranglen, G. Pitting and sulphide inclusions in steel. Corros. Sci. 1974, 14, 331–349. [Google Scholar] [CrossRef]
- Nie, Z.P.; Wu, K.M.; Zhang, X.; Liu, J.; Rodinova, I.; Qiao, W.W. Effect of different deoxidation methods on local corrosion resistance of low alloy high strength steel. J. Iron. Steel Res. Int. 2018, 30, 222–228. [Google Scholar]
- Liu, C.; Jiang, Z.; Zhao, J.; Cheng, X.; Liu, Z.; Zhang, D.; Li, X. Influence of rare earth metals on mechanisms of localised corrosion induced by inclusions in Zr-Ti deoxidised low alloy steel. Corros. Sci. 2020, 166, 108463.1–108463.10. [Google Scholar] [CrossRef]
- Wei, W.; Wu, K.; Zhang, X.; Liu, J.; Qiu, P.; Cheng, L. In-situ characterization of initial marine corrosion induced by rare-earth elements modified inclusions in Zr-Ti deoxidized low-alloy steels. J. Mater. Res. Technol. 2020, 9, 1412–1424. [Google Scholar] [CrossRef]
- Yin, C.-C.; Cheng, L.; Wang, Z.-H.; Zhao, T.-L.; Cheng, S.; Hu, S.-E.; Liu, Z.-C.; Luo, D.; Xiao, D.-H.; Jin, X.; et al. Local corrosion behaviors in the coarse-grained heat-affected zone in a newly developed Zr-Ti-Al-RE deoxidized high-strength low-alloy steel. Materials 2023, 16, 876. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, S.B.; Kim, D.S. Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment. Metall. Mater. Trans. B 2005, 36, 67–73. [Google Scholar] [CrossRef]
- Tyurin, A.G.; Pyshmintsev, I.Y.; Kostitsyna, I.V.; Zubkova, I.M. Thermodynamics of chemical and electrochemical stability of corrosion active nonmetal inclusions. Prot. Met. 2007, 43, 34–44. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, W.; Li, S.; Chowwanonthapunya, T.; Wongpat, B.; Zhao, Y.; Dong, B.; Zhang, T.; Li, X. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion. J. Mater. Sci. Technol. 2020, 39, 190–199. [Google Scholar] [CrossRef]
- Liu, Z.; Lian, X.; Liu, T.; Yang, Y.; Zhu, J.; Dong, H. Effects of rare earth elements on corrosion behaviors of low-carbon steels and weathering steels. Mater. Corros. 2019, 71, 258–266. [Google Scholar] [CrossRef]
- Speight, J. Lange’s Handbook of Chemistry; McGraw-Hill Education: New York, NY, USA, 2005. [Google Scholar]
- Jiangnan, Y.; Lichang, W.; Wenhao, S. The effect of copper on the anodic dissolution behaviour of austenitic stainless steel in acidic chloride solution. Corros. Sci. 1992, 33, 851–859. [Google Scholar] [CrossRef]
- McCafferty, E. Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci. 2005, 47, 3202–3215. [Google Scholar] [CrossRef]
- G102-89(2015); Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM International: West Conshohocken, PA, USA, 2015.
- Sun, Y.; Tan, X.; Lan, R.; Ran, G.; Li, J.; Jiang, Y. Mechanisms of inclusion-induced pitting of stainless steels: A review. J. Mater. Sci. Technol. 2024, 168, 143–156. [Google Scholar] [CrossRef]
- Fuertes, N.; Bengtsson, V.; Pettersson, R.; Rohwerder, M. Use of SVET to evaluate corrosion resistance of heat tinted stainless steel welds and effect of post-weld cleaning. Mater. Corros. 2017, 68, 7–19. [Google Scholar] [CrossRef]
- Chai, F.; Yang, C.; Su, H.; Zhang, Y.; Xu, Z.; Yang, Y. Effect of Zr addition to Ti-killed steel on inclusion formation and microstructural evolution in welding induced coarse-grained heat affected zone. Acta Metall. Sin. (Engl. Lett.) 2008, 21, 220–226. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, R. Controlled motion of electrically neutral microparticles by pulsed direct current. Sci. Rep. 2015, 5, 10162. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R. Zirconia and Zirconia Ceramics, 2nd ed.; Magnesium Elektron Ltd.: Twickenham, UK, 1986. [Google Scholar]
- Guo, A.M.; Li, S.R.; Guo, J.; Li, P.H.; Ding, Q.F.; Wu, K.M.; He, X.L. Effect of zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel. Mater. Charact. 2008, 59, 134–139. [Google Scholar] [CrossRef]
- Li, Y.; Wan, X.L.; Lu, W.Y.; Shirzadi, A.A.; Isayev, O.; Hress, O.; Wu, K.M. Effect of Zr-Ti Combined Deoxidation on the Microstructure and Mechanical Properties of High-Strength Low-Alloy Steels. Mater. Sci. Eng. A 2016, 659, 179–187. [Google Scholar] [CrossRef]
- Atkinson, H.V.; Shi, G. Characterization of inclusions in clean steels: A review including the statistics of extremes methods. Prog. Mater. Sci. 2003, 48, 457–520. [Google Scholar] [CrossRef]
- You, P.; Zhang, X.; Zhang, H.; Yang, X.; Zeng, C. Effect of Nb additions on the high-temperature performances of NiFe2O4 spinel coatings fabricated on ferritic stainless steel. Oxid. Met. 2020, 93, 465–482. [Google Scholar] [CrossRef]
- Li, D.; Huang, F.; Lei, X.; Jin, Y. Localized corrosion of 304 stainless steel triggered by embedded MnS. Corros. Sci. 2023, 211, 110860. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Revilla, R.I.; Sun, T.; Zhao, J.; Zhang, D.; Yang, S.; Liu, Z.; Cheng, X.; Terryn, H.; et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels. Corros. Sci. 2021, 179, 109150. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Ni | Zr + Ti | Nb | Fe | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.30 | 0.52 | 0.49 | 0.0066 | 0.0045 | 13.43 | 0.48 | - | - | Bal. |
2 | 0.29 | 0.56 | 0.48 | 0.0080 | 0.0050 | 13.78 | 1.40 | 0.005–0.060 | 0.009–0.030 | Bal. |
Anti-Corrosion Grade | Imax, mA/cm2 |
---|---|
1 High corrosion stability | <3 |
2 Qualified corrosion stability | 3–6 |
3 Unstable corrosion stability | >6 |
Sample | Rs (Ω·cm2) | Q1 (104Ω−1 sncm−2) | n1 | R1 (Ω·cm2) | Q2 (104Ω−1 sncm−2) | n2 | R2 (Ω·cm2) | Chsq |
---|---|---|---|---|---|---|---|---|
Conventional martensitic stainless steel | 4.36 | 2.83 | 0.83 | 5.32 | 2.95 | 0.85 | 3.12 × 103 | 4.31 × 10−3 |
Composite deoxidized martensitic stainless steel | 4.78 | 1.05 | 0.91 | 7.12 | 1.43 | 0.93 | 5.81 × 103 | 8.35 × 10−4 |
i(A·cm−2) | E(V, vs. SCE) | CR(mm/yr) | |
---|---|---|---|
conventional martensitic stainless steels | 4.75 × 10−6 | −0.385 | 0.0326 |
Zr-Ti combined deoxidized martensitic stainless steels | 3.93 × 10−6 | −0.212 | 0.0269 |
Category | Crystal Structure | Planes (hkl) | Plane Distance | β | int | h | k | l | a | b | c |
---|---|---|---|---|---|---|---|---|---|---|---|
ZrO2 | Monoclinic | 002 | 2.621 | 99.23 | 20 | 0 | 0 | 2 | 5.145 | 5.207 | 5.311 |
022 | 1.847 | 14 | 0 | 2 | 2 | ||||||
113 | 1.509 | 4 | 1 | 1 | 3 | ||||||
MnS | Fcc | 111 | 2.612 | 90 | 100 | 1 | 1 | 1 | 5.224 | 5.224 | 5.224 |
220 | 1.847 | 50 | 2 | 2 | 0 | ||||||
222 | 1.509 | 20 | 2 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Cheng, S.; Huang, L.; Huang, X.; Wang, Z.; Hu, C.; Sundas, A.; Marina, A.; Faiqa, B.; Wu, K. Seawater Corrosion Resistance of Zr-Ti Combined Deoxidized Martensitic Stainless Steel. Materials 2025, 18, 4227. https://doi.org/10.3390/ma18184227
Wu Q, Cheng S, Huang L, Huang X, Wang Z, Hu C, Sundas A, Marina A, Faiqa B, Wu K. Seawater Corrosion Resistance of Zr-Ti Combined Deoxidized Martensitic Stainless Steel. Materials. 2025; 18(18):4227. https://doi.org/10.3390/ma18184227
Chicago/Turabian StyleWu, Qinghai, Shi Cheng, Lei Huang, Xuezhong Huang, Zhihui Wang, Chengyang Hu, Arshad Sundas, Afzal Marina, Barkat Faiqa, and Kaiming Wu. 2025. "Seawater Corrosion Resistance of Zr-Ti Combined Deoxidized Martensitic Stainless Steel" Materials 18, no. 18: 4227. https://doi.org/10.3390/ma18184227
APA StyleWu, Q., Cheng, S., Huang, L., Huang, X., Wang, Z., Hu, C., Sundas, A., Marina, A., Faiqa, B., & Wu, K. (2025). Seawater Corrosion Resistance of Zr-Ti Combined Deoxidized Martensitic Stainless Steel. Materials, 18(18), 4227. https://doi.org/10.3390/ma18184227