ZnO/SiO2 Filler-Incorporated Resin Composites for Vat Photopolymerization of Dental Restorations with Antimicrobial Efficacy
Abstract
1. Introduction
2. Materials and Methods
2.1. Starting Materials and Preparation of ZnO/SiO2 Resin-Ceramic Composite Suspension
2.2. Characterization of ZnO/SiO2 Filler
2.3. Characterization of ZnO/SiO2 Resin Composite Suspension
2.4. Evaluation of ZnO/SiO2 Filler Distribution in Resin-Ceramic Composites
2.5. Evaluation of Mechanical Properties of Resin-Ceramic Composites
2.6. Evaluation of Antimicrobial Effects of Resin-Ceramic Composites
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of ZnO/SiO2 Filler
3.2. Rheological Behavior of Resin-Ceramic Composite Suspensions
3.3. Photocuring Behavior of Resin-Ceramic Composites
3.4. Optimization of 3D Printing Parameters
3.5. Filler Distribution in Printed ZnO/SiO2 Resin-Ceramic Composites
3.6. Mechanical Properties of Printed ZnO/SiO2 Resin-Ceramic Composites
3.7. Antimicrobial Activities of Printed ZnO/SiO2 Resin-Ceramic Composites
3.8. Fabrication of Provisional 3-Unit Bridge Using ZnO/SiO2 Resin-Ceramic Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaushik, S.; Rathee, M.; Jain, P.; Malik, S.; Agarkar, V.; Alam, M. Effect of Conventionally Fabricated and Three-Dimensional Printed Provisional Restorations on Hard and Soft Peri-Implant Tissues in the Mandibular Posterior Region: A Randomized Controlled Clinical Trial. Dent. Res. J. 2023, 20, 109. [Google Scholar] [CrossRef]
- Santosa, R.E. Provisional Restoration Options in Implant Dentistry. Aust. Dent. J. 2007, 52, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassoni, L.E. 3D Printed versus Conventionally Cured Provisional Crown and Bridge Dental Materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Pratap, B.; Gupta, R.K.; Bhardwaj, B.; Nag, M. Resin Based Restorative Dental Materials: Characteristics and Future Perspectives. Jpn. Dent. Sci. Rev. 2019, 55, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Schlafer, S.; Bornmann, T.; Paris, S.; Göstemeyer, G. The Impact of Glass Ionomer Cement and Composite Resin on Microscale pH in Cariogenic Biofilms and Demineralization of Dental Tissues. Dent. Mater. 2021, 37, 1576–1583. [Google Scholar] [CrossRef]
- Øilo, M.; Bakken, V. Biofilm and Dental Biomaterials. Materials 2015, 8, 2887–2900. [Google Scholar] [CrossRef]
- Prakash, J.; Shenoy, M.; Alhasmi, A.; Al Saleh, A.A.; Shivakumar, G.C.; Shivakumar, S. Biocompatibility of 3D-Printed Dental Resins: A Systematic Review. Cureus 2024, 16, e38595. [Google Scholar] [CrossRef]
- Rogers, H.B.; Zhou, L.T.; Kusuhara, A.; Zaniker, E.; Shafaie, S.; Owen, B.C.; Woodruff, T.K. Dental Resins Used in 3D Printing Technologies Release Ovo-Toxic Leachates. Chemosphere 2021, 270, 129003. [Google Scholar] [CrossRef]
- Hwangbo, N.K.; Nam, N.E.; Choi, J.H.; Kim, J.E. Effects of the Washing Time and Washing Solution on the Biocompatibility and Mechanical Properties of 3D-Printed Dental Resin Materials. Polymers 2021, 13, 4410. [Google Scholar] [CrossRef]
- Tichá, D.; Tomášik, J.; Oravcová, L.; Thurzo, A. Three-Dimensionally-Printed Polymer and Composite Materials for Dental Applications with Focus on Orthodontics. Polymers 2024, 16, 3151. [Google Scholar] [CrossRef]
- Stampfl, J.; Schwentenwein, M.; Homa, J.; Prinz, F.B. Lithography-Based Additive Manufacturing of Ceramics: Materials, Applications and Perspectives. MRS Commun. 2023, 13, 786–794. [Google Scholar] [CrossRef]
- Roohani, I.; Entezari, A.; Zreiqat, H. Liquid Crystal Display Technique (LCD) for High Resolution 3D Printing of Triply Periodic Minimal Surface Lattices Bioceramics. Addit. Manuf. 2023, 74, 103720. [Google Scholar] [CrossRef]
- Weaver, E.; Mathew, E.; Caldwell, J.; Hooker, A.; Uddin, S.; Lamprou, D.A. The Manufacturing of 3D-Printed Microfluidic Chips to Analyse the Effect upon Particle Size During the Synthesis of Lipid Nanoparticles. J. Pharm. Pharmacol. 2022, 75, 245–252. [Google Scholar] [CrossRef]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-Curing 3D Printing Technique and Its Challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Lyros, I.; Christopoulou, I.; Tsolakis, I.; Papadopoulos, M.A. Comparing the Accuracy of 3 Different Liquid Crystal Display Printers for Dental Model Printing. Am. J. Orthod. Dentofac. Orthop. 2024, 166, 7–14. [Google Scholar] [CrossRef]
- Zhu, N.; Hou, Y.; Yang, W.; Wen, G.; Zhong, C.; Wang, D.; Liu, Y.; Zhang, L. Preparation of Complex SiOC Ceramics by a Novel Photocurable Precursor with Liquid Crystal Display (LCD) 3D Printing Technology. J. Eur. Ceram. Soc. 2022, 42, 3204–3212. [Google Scholar] [CrossRef]
- Zhu, Z. Freeform Optics for Achieving Collimated and Uniform Light Distribution in LCD-Type UV-Curable 3D Printing. IEEE Photonics J. 2023, 15, 1–7. [Google Scholar] [CrossRef]
- Caplins, B.W.; Higgins, C.I.; Kolibaba, T.J.; Arp, U.; Miller, C.C.; Poster, D.L.; Zarobila, C.J.; Zong, Y.; Killgore, J.P. Characterizing Light Engine Uniformity and Its Influence on Liquid Crystal Display Based Vat Photopolymerization Printing. Addit. Manuf. 2023, 62, 103381. [Google Scholar] [CrossRef] [PubMed]
- Fielding, G.A.; Bandyopadhyay, A.; Bose, S. Effects of Silica and Zinc Oxide Doping on Mechanical and Biological Properties of 3D Printed Tricalcium Phosphate Tissue Engineering Scaffolds. Dent. Mater. 2012, 28, 113–122. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Tijani, J.O.; Jacob, J.O.; Suleiman, M.A.T. Effect of mixing ratios of SiO2 nanoparticles synthesized from metakaolin on the physicochemical properties of ZnO/SiO2 nanocomposites. Nano-Struct. Nano-Objects 2023, 35, 101003. [Google Scholar] [CrossRef]
- Hou, Z.; Niu, X.; Lu, Y.; Zhang, Y.; Zhu, Y. Effect of ZnO-SiO2 composite abrasive on sapphire polishing performance and mechanism analysis. ECS J. Solid State Sci. Technol. 2021, 10, 104001. [Google Scholar] [CrossRef]
- Sivakumar, P.; Lee, M.; Kim, Y.S.; Shim, M.S. Photo-Triggered Antibacterial and Anticancer Activities of Zinc Oxide Nanoparticles. J. Mater. Chem. B 2018, 6, 4852–4871. [Google Scholar] [CrossRef] [PubMed]
- Afsharnezhad, S.; Kashefi, M.; Behravan, J.; Ehtesham Gharaee, M.; Meshkat, M.; Shahrokh Abadi, K.; Homayoni Tabrizi, M. Investigation of Nano-SiO2 Impact on Mechanical and Biocompatibility Properties of Cyanoacrylate Based Nanocomposites for Dental Application. Int. J. Adhes. Adhes. 2014, 54, 177–183. [Google Scholar] [CrossRef]
- Yang, D.L.; Cui, Y.N.; Sun, Q.; Liu, M.; Niu, H.; Wang, J.-X. Antibacterial Activity and Reinforcing Effect of SiO2-ZnO Complex Cluster Fillers for Dental Resin Composites. Biomater. Sci. 2021, 9, 1795–1804. [Google Scholar] [CrossRef]
- Bose, S.; Akdogan, E.K.; Balla, V.K.; Ciliveri, S.; Colombo, P.; Franchin, G.; Ku, N.; Kushram, P.; Niu, F.; Pelz, J.; et al. 3D Printing of Ceramics: Advantages, Challenges, Applications, and Perspectives. J. Am. Ceram. Soc. 2024, 107, 7879–7920. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, T.; Huang, G. State-of-the-Art Research Progress and Challenge of the Printing Techniques, Potential Applications for Advanced Ceramic Materials 3D Printing. Mater. Today Commun. 2024, 40, 110001. [Google Scholar] [CrossRef]
- Abedin, F.N.J.; Yahaya, A.N.A.; Khalil, N.A.; Zulkifli, M. Antimicrobial capability of inorganic materials as fillers for thermoplastic elastomer—A state of the art review. Mater. Today Proc. 2023, 74, 480–484. [Google Scholar] [CrossRef]
- Olmos, D.; González-Benito, J. Polymeric materials with antibacterial activity: A review. Polymers 2021, 13, 613. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.; Park, S. Effect of Barium Silicate on Mechanical Properties, Transmittance, and Protein Adsorption of Resin for Additive Manufacturing Containing Zwitterionic Polymer. J. Dent. 2024, 135, 105134. [Google Scholar] [CrossRef]
- Rooney, K.; Dong, Y.; Basak, A.K.; Pramanik, A. Prediction of Mechanical Properties of 3D Printed Particle-Reinforced Resin Composites. J. Compos. Sci. 2024, 8, 416. [Google Scholar] [CrossRef]
- Cao, C.; Wang, C.; Zhao, Z. Optimization of Curing Behavior of Si3N4 UV Resin for Photopolymerization 3D Printing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 678, 012013. [Google Scholar] [CrossRef]
- Zattera, A.C.A.; Morganti, F.A.; Balbinot, G.S.; Della Bona, A.; Collares, F.M. The influence of filler load in 3D printing resin-based composites. Dent. Mater. 2024, 40, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Habib, E.; Wang, R.; Wang, Y.; Zhu, M.; Zhu, X.X. Inorganic fillers for dental resin composites: Present and future. ACS Biomater. Sci. Eng. 2016, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hada, T.; Kanazawa, M.; Miyamoto, N.; Liu, H.; Iwaki, M.; Komagamine, Y.; Minakuchi, S. Effect of different filler contents and printing directions on the mechanical properties for photopolymer resins. Int. J. Mol. Sci. 2022, 23, 2296. [Google Scholar] [CrossRef]
- Scotti, C.K.; Velo, M.M.D.A.C.; Rizzante, F.A.P.; de Lima Nascimento, T.R.; Mondelli, R.F.L.; Bombonatti, J.F.S. Physical and surface properties of a 3D-printed composite resin for a digital workflow. J. Prosthet. Dent. 2020, 124, 614-e1. [Google Scholar] [CrossRef]
- Kowalska, A.; Sokolowski, J.; Bociong, K. The photoinitiators used in resin-based dental composite—A review and future perspectives. Polymers 2021, 13, 470. [Google Scholar] [CrossRef]
- Brady, G.A.; Halloran, J.W. Differential photo-calorimetry of photopolymerizable ceramic suspensions. J. Mater. Sci. 1998, 33, 4551–4560. [Google Scholar] [CrossRef]
- ISO 4049; Dentistry—Polymer-Based Restorative Materials. International Organization of Standardization: Geneva, Switzerland, 2019.
- Choi, B.J.; Yoon, S.; Im, Y.W.; Lee, J.H.; Jung, H.J.; Lee, H.H. Uniaxial/Biaxial Flexure Strengths and Elastic Properties of Resin-Composite Block Materials for CAD/CAM. Dent. Mater. 2019, 35, 389–401. [Google Scholar] [CrossRef]
- ISO 6507-1; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. International Organization of Standardization: Geneva, Switzerland, 2018.
- Xu, L.; Li, Y.; Chen, F.; Shen, X.; Yang, Z.; Wang, J.; Du, Y.; Yue, X.; Liu, R.; Zhao, Y. Preparation of ZnO@SiO2 Composite with Controllable Sizes and Tunable Fluorescence via Alkali-Free Strategy. J. Alloys Compd. 2024, 1003, 175631. [Google Scholar] [CrossRef]
- Rahmat, F.I.; Fen, Y.W.; Anuar, M.F.; Omar, N.A.S.; Zaid, M.H.M.; Matori, K.A.; Khaidir, R.E.M. Synthesis and Characterization of ZnO-SiO2 Composite Using Oil Palm Empty Fruit Bunch as a Potential Silica Source. Molecules 2021, 26, 1061. [Google Scholar] [CrossRef]
- Hassan, Y.M.; Guan, B.H.; Chuan, L.K.; Hamza, M.F.; Khandaker, M.U.; Sikiru, S.; Adam, A.A.; Abdul Sani, S.F.; Abdulkadir, B.A.; Ayub, S. The Influence of ZnO/SiO2 Nanocomposite Concentration on Rheology, Interfacial Tension, and Wettability for Enhanced Oil Recovery. Chem. Eng. Res. Des. 2022, 179, 452–461. [Google Scholar] [CrossRef]
- Hassan, Y.M.; Guan, B.H.; Chuan, L.K.; Zaid, H.M.; Hamza, M.F.; Adam, A.A.; Usman, F.; Oluwatobi, Y.A. Effect of Annealing Temperature on the Rheological Property of ZnO/SiO2 Nanocomposites for Enhanced Oil Recovery. Mater. Today Proc. 2022, 48, 905–910. [Google Scholar] [CrossRef]
- Yang, S.; Nie, Y.; Zhang, B.; Tang, X.; Mao, H. Construction of Er-Doped ZnO/SiO2 Composites with Enhanced Antimicrobial Properties and Analysis of Antibacterial Mechanism. Ceram. Int. 2020, 46, 20932–20942. [Google Scholar] [CrossRef]
- Mao, H.; Zhang, B.; Nie, Y.; Tang, X.; Yang, S.; Zhou, S. Enhanced Antibacterial Activity of V-Doped ZnO@SiO2 Composites. Appl. Surf. Sci. 2021, 546, 149127. [Google Scholar] [CrossRef]
- Dang, M.; Yue, X.; Zhou, G.; Hu, S. Influence of Resin Composition on Rheology and Polymerization Kinetics of Alumina Ceramic Suspensions for Digital Light Processing (DLP) Additive Manufacturing. Ceram. Int. 2023, 49, 20456–20464. [Google Scholar] [CrossRef]
- de Camargo, I.L.; Morais, M.M.; Fortulan, C.A.; Branciforti, M.C. A Review on the Rheological Behavior and Formulations of Ceramic Suspensions for Vat Photopolymerization. Ceram. Int. 2021, 47, 11906–11921. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, D.; Yang, Z.; Duan, X.; He, P.; Jia, D.; Zhou, Y. Rheology of Organics-Free Aqueous Ceramic Suspensions for Additive Manufacturing of Dense Silicon Nitride Ceramics. Ceram. Int. 2022, 48, 31941–31951. [Google Scholar] [CrossRef]
- Bodor, M.; Lasagabáster-Latorre, A.; Arias-Ferreiro, G.; Dopico-García, M.S.; Abad, M.-J. Improving the 3D Printability and Mechanical Performance of Biorenewable Soybean Oil-Based Photocurable Resins. Polymers 2024, 16, 977. [Google Scholar] [CrossRef]
- Lee, S.; Kang, S.; Lee, H.; Shin, H.; Kim, J.; Park, S.; Jung, W.; Kwon, K.; Cho, Y.; Kim, H. Enhanced Mechanical Properties of 3D Printed Zirconia Dental Restorations by Hybridizing with Polylactic Acid. J. Mater. Sci. Mater. Med. 2023, 34, 76. [Google Scholar]
- Zhang, X.; Sun, Q.; Li, X.; Li, Z.; Zhang, Y. Investigation of Photopolymerization Kinetics and the Physical Properties of Resin for 3D Printing Dental Materials. Dent. Mater. 2024, 40, 1257–1265. [Google Scholar]
- Hu, Y.; Zhang, L.; Gao, M.; Lu, L.; Zhang, X. Biomechanical Performance and Bacterial Resistance of 3D Printed Titanium Implants for Dental Applications. J. Mech. Behav. Biomed. Mater. 2024, 111, 104087. [Google Scholar]
- Wu, P.; Cui, Y.; Yang, Z.; Wang, C.; Liu, J.; Zhao, D.; Liang, H.; Zhang, Z. Investigation on the Antibacterial Properties and Cytotoxicity of ZnO-SiO2 Nanocomposites for Dental Applications. J. Appl. Biomater. Funct. Mater. 2024, 22, 128–138. [Google Scholar]
- Li, Z.; Sun, W.; Zhang, L.; Zhou, F.; Li, M.; Wang, Y.; Ma, Z. Advances in 3D Printing of Dental Resin Composites: Techniques, Materials, and Challenges. Polymers 2024, 16, 913. [Google Scholar]
- Song, J.; Song, D.; Shin, Y.; Kim, J.; Kwon, S.; Kim, M.; Park, S.; Jang, K.; Kim, H. Development of Dental Resin Composites with Antibacterial Properties by Incorporating Nano-Silver and Zinc Oxide. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, 347–356. [Google Scholar]
- Alayed, A.; Silikas, N.; Watts, D.C. The effect of photoinitiator systems on resin-based composite containing ZnO-nanoparticles. Dent. Mater. 2025, 41, 220–228. [Google Scholar] [CrossRef]
- Duan, C.; Wang, J.; Li, M.; Wang, R. Synergetic effect of ZnO-doped dendritic porous silica and barium glass powder as functional bimodal fillers for dental composite applications. Dent. Mater. 2025, 41, 880–891. [Google Scholar] [CrossRef]
- Tan, L.; Li, D.; Wang, Z.; Xu, Y.; Ding, Y. The Effect of Zirconia Addition on the Properties of 3D Printed Ceramic Resin for Dental Applications. J. Mater. Sci. Technol. 2024, 74, 92–100. [Google Scholar]
- Jia, B.; Zhang, B.; Li, J.; Qin, J.; Huang, Y.; Huang, M.; Ming, Y.; Jiang, J.; Chen, R.; Xiao, Y.; et al. Emerging polymeric materials for treatment of oral diseases: Design strategy towards a unique oral environment. Chem. Soc. Rev. 2024, 53, 3273–3301. [Google Scholar] [CrossRef]
- Alkarri, S.; Bin Saad, H.; Soliman, M. On antimicrobial polymers: Development, mechanism of action, international testing procedures, and applications. Polymers 2024, 16, 771. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Ren, X.; Wang, J.; Liu, Z. Study on the Durability of 3D Printed Dental Resin Materials under Thermal and Mechanical Stress. Dent. Mater. 2023, 39, 1249–1257. [Google Scholar]
- Bai, X.; Lin, C.; Wang, Y.; Ma, J.; Wang, X.; Yao, X.; Tang, B. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent. Mater. 2020, 36, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Zidan, S.; Silikas, N.; Alhotan, A.; Haider, J.; Yates, J. Investigating the Mechanical Properties of ZrO2-Impregnated PMMA Nanocomposite for Denture-Based Applications. Materials 2019, 12, 1344. [Google Scholar] [CrossRef] [PubMed]
- Harsha Vardhan, D.; Ramesh, A.; Chandra Mohana Reddy, B. Effect of ceramic fillers on flexural strength of the GFRP composite material. Mater. Today Proc. 2021, 37, 1739–1742. [Google Scholar] [CrossRef]
- Garcia, P.; Alarcon, L.; Ramirez, R.; Velasquez, L.; Pizarro, M. Photocuring Behaviors of Resin Composites for Additive Manufacturing in Dentistry. J. Mater. Chem. B. 2023, 11, 4024–4032. [Google Scholar]
- Abidi, R.; Brant, K.; Jaimes, A.; Gherardini, M.; Pessan, L.A.; Biswas, M.; Zogbi, L. Development and Characterization of Antibacterial Composite Dental Restorations Using Nano-Silver-Infused Hydroxyapatite. J. Biomed. Mater. Res. A 2024, 112, 671–683. [Google Scholar]
- Leite, M.L.; Comeau, P.; Zaghwan, A.; Shen, Y.; Manso, A.P. Long-lasting antimicrobial effect of multipurpose ZnO nanoparticle-loaded dental resins enhanced by blue light photodynamic therapy. Dent. Mater. 2025, 41, 347–355. [Google Scholar] [CrossRef]
- McCracken, M.; Dvorak, M.; Harper, A.; Gates, K.; Wilson, J.; Pletcher, M.; Chia, H.; Wu, S.; Brown, K.; Zeiser, K. Recent Developments in the Use of Dental Composites and Resins in Clinical Practice. J. Esthet. Restor. Dent. 2024, 36, 98–105. [Google Scholar]
- Yan, F.; Zhao, X.; Liu, Z.; Qin, W.; Li, X.; Jiang, B.; Liu, D.; Guo, S. Study on the Biocompatibility of 3D Printed Ceramic Composites for Dental Implant Applications. J. Biomed. Mater. Res. A 2024, 112, 679–689. [Google Scholar]
- Patel, P.; Kumar, S.; Sharma, A.; Nayak, S.; Batra, N.; Manna, P.; Srivastava, S.; Shukla, S.; Mishra, S.; Verma, A. A Comprehensive Review on the Recent Advances in the Synthesis and Application of Zinc Oxide Nanocomposites in Dentistry. J. Dent. Res. 2024, 103, 624–633. [Google Scholar]
Composite (0 vol%) | ZnO/SiO2 filler | UDMA | TEGDMA | HEMA | BYK-2001 (3.0 wt% of filler) | TPO (3.0 wt% of monomer) |
Amount (g) | 0 | 5.00 | 2.00 | 3.00 | 0 | 0.30 |
Density (g/cc) | 2.68 | 1.11 | 1.07 | 1.07 | 1.03 | 1.12 |
vol% | 0 | 47.69 | 19.79 | 29.68 | 0 | 2.84 |
Composite (5 vol%) | ZnO/SiO2 filler | UDMA | TEGDMA | HEMA | BYK-2001 (3.0 wt% of filler) | TPO (3.0 wt% of monomer) |
Amount (g) | 1.34 | 5.00 | 2.00 | 3.00 | 0.04 | 0.30 |
Density (g/cc) | 2.68 | 1.11 | 1.07 | 1.07 | 1.03 | 1.12 |
vol% | 5.00 | 45.12 | 18.72 | 28.08 | 0.40 | 2.68 |
Composite (10 vol%) | ZnO/SiO2 filler | UDMA | TEGDMA | HEMA | BYK-2001 (3.0 wt% of filler) | TPO (3.0 wt% of monomer) |
Amount (g) | 2.84 | 5.00 | 2.00 | 3.00 | 0.08 | 0.30 |
Density (g/cc) | 2.68 | 1.11 | 1.07 | 1.07 | 1.03 | 1.12 |
vol% | 10.00 | 42.55 | 17.66 | 26.49 | 0.77 | 2.53 |
Elements (wt%) | Compositions (wt%) | ||||
Zn | Si | O | ZnO | SiO2 | |
ZnO/SiO2 ceramic filler | 48.5 ± 0.8 | 18.5 ± 0.5 | 33.0 ± 0.4 | 59.5 ± 0.7 | 40.5 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.-W.; Kim, G.-N.; Jung, J.-M.; Koh, Y.-H. ZnO/SiO2 Filler-Incorporated Resin Composites for Vat Photopolymerization of Dental Restorations with Antimicrobial Efficacy. Materials 2025, 18, 3909. https://doi.org/10.3390/ma18163909
Jeon J-W, Kim G-N, Jung J-M, Koh Y-H. ZnO/SiO2 Filler-Incorporated Resin Composites for Vat Photopolymerization of Dental Restorations with Antimicrobial Efficacy. Materials. 2025; 18(16):3909. https://doi.org/10.3390/ma18163909
Chicago/Turabian StyleJeon, Jong-Won, Gyu-Nam Kim, Jae-Min Jung, and Young-Hag Koh. 2025. "ZnO/SiO2 Filler-Incorporated Resin Composites for Vat Photopolymerization of Dental Restorations with Antimicrobial Efficacy" Materials 18, no. 16: 3909. https://doi.org/10.3390/ma18163909
APA StyleJeon, J.-W., Kim, G.-N., Jung, J.-M., & Koh, Y.-H. (2025). ZnO/SiO2 Filler-Incorporated Resin Composites for Vat Photopolymerization of Dental Restorations with Antimicrobial Efficacy. Materials, 18(16), 3909. https://doi.org/10.3390/ma18163909