Structural, Mechanical, Electronic, and Optical Properties of Hydrogen-Storage Magnesium-Based Mg2XH9 (X = Cs, Rb)
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Structural Stability and Hydrogen Storage Performance
3.2. Mechanical Properties
3.3. Electronic Band Structure and Density of States
3.4. Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Phases | Pressure (GPa) | Lattice Parameters | Atoms | Wyckoff Positions (Fractional) | ||
---|---|---|---|---|---|---|
x | y | z | ||||
Pn Mg2CsH9 | 0 | a = 8.8667 | Cs (4b) | 0.2500 | 0.2500 | 0.2500 |
Mg (8e) | 0.8571 | 0.8571 | 0.8571 | |||
H (24h) | 0.5302 | 0.9691 | 0.7240 | |||
H (12f) | 0.7701 | 0.0000 | 0.0000 | |||
Pn Mg2RbH9 | 0 | a = 8.6630 | Rb (4b) | 0.2500 | 0.2500 | 0.2500 |
Mg (8e) | 0.8552 | 0.8552 | 0.8552 | |||
H (24j) | 0.5314 | 0.9686 | 0.7500 | |||
H (12g) | 0.7644 | 0.0000 | –0.0000 |
References
- Khan, M.I.; Al-Ghamdi, S.G. Hydrogen economy for sustainable development in GCC countries: A SWOT analysis considering current situation, challenges, and prospects. Int. J. Hydrogen Energy 2023, 48, 10315–10344. [Google Scholar] [CrossRef]
- Le, T.T.; Sharma, P.; Bora, B.J.; Tran, V.D.; Truong, T.H.; Le, H.C.; Nguyen, P.Q.P. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Int. J. Hydrogen Energy 2024, 54, 791–816. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Stavila, V.; Snider, J.L.; Witman, M.; Bowden, M.E.; Brooks, K.; Tran, B.L.; Autrey, T. Challenges to developing materials for the transport and storage of hydrogen. Nat. Chem. 2022, 14, 1214–1223. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ikeda, Y.; Edalati, P.; Mito, M.; Grabowski, B.; Li, H.-W.; Edalati, K. High-entropy hydrides for fast and reversible hydrogen storage at room temperature: Binding-energy engineering via first-principles calculations and experiments. Acta Mater. 2022, 236, 118117. [Google Scholar] [CrossRef]
- Von Colbe, J.B.; Ares, J.R.; Barale, J.; Baricco, M.; Buckley, C.; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I.; et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 2019, 44, 7780–7808. [Google Scholar] [CrossRef]
- Jain, A.; Shin, Y.; Persson, K.A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 2016, 1, 15004. [Google Scholar] [CrossRef]
- Al, S.; Kurkcu, C.; Yamcicier, C. High pressure phase transitions and physical properties of Li2MgH4; implications for hydrogen storage. Int. J. Hydrogen Energy 2020, 45, 4720–4730. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Aminudin, M.; Kamarudin, S.; Lim, B.; Majilan, E.H.; Masdar, M.S.; Shaari, N. An overview: Current progress on hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2023, 48, 4371–4388. [Google Scholar] [CrossRef]
- Al, S.; Yortanl, M.; Mete, E. Lithium metal hydrides (Li2CaH4 and Li2SrH4) for hydrogen storage; mechanical, electronic, and optical properties. Int. J. Hydrogen Energy 2020, 45, 18782–18788. [Google Scholar] [CrossRef]
- Nivedhitha, K.S.; Beena, T.; Banapurmath, N.R.; Umarfarooq, M.A.; Ramasamy, V.; Soudagar, M.E.M.; Ağbulut, Ü. Advances in hydrogen storage with metal hydrides: Mechanisms, materials, and challenges. Int. J. Hydrogen Energy 2024, 61, 1259–1273. [Google Scholar] [CrossRef]
- Trukhanov, A.V.; Turchenko, V.O.; Bobrikov, I.A.; Trukhanov, S.V.; Kazakevich, I.S.; Balagurov, A.M. Crystal structure and magnetic properties of the BaFe12-xAlxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 2015, 393, 253–259. [Google Scholar] [CrossRef]
- Noreus, D.; Olsson, L. The structure and dynamics of hydrogen in Mg2NiH4 studied by elastic and inelastic neutron scattering. J. Chem. Phys. 1983, 78, 2419–2427. [Google Scholar] [CrossRef]
- Kaiser, A.; Renzler, M.; Kranabetter, L.; Schwärzler, M.; Parajuli, R.; Echt, O.; Scheier, P. On enhanced hydrogen adsorption on alkali (cesium) doped C60 and effects of the quantum nature of the H2 molecule on physisorption energies. Int. J. Hydrogen Energy 2017, 42, 3078–3086. [Google Scholar] [CrossRef]
- Hakami, O.; Alathlawi, H.J. Study of mechanical, optoelectronic, and thermoelectric characteristics of Be/Mg ions based double perovskites A2FeH6 (A = Be, Mg) for hydrogen storage applications. Int. J. Hydrogen Energy 2024, 83, 307–316. [Google Scholar] [CrossRef]
- Zelai, T. Study of magnetic, thermoelectric, and mechanical properties of double perovskites Be2XH6 (X = Cr and Mn) for spintronic and hydrogen-storage applications. Inorg. Chem. Commun. 2024, 165, 112579. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063–2070. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, W.; Chen, L.; Zhang, Y.; Wang, H.; Zhang, M.; Wei, Q. Structural, strength and fracture mechanisms of superconducting transition metal nitrides TM3N5 (TM = W and Mo). Phys. Chem. Chem. Phys. 2025, 27, 6134–6145. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wei, Q.; Luo, J.; Jia, X.; Zhang, M.; Zhu, X.; Wei, B. Pressure-induced phase transitions and electronic structure evolution of Ba4Au. Materials 2025, 18, 3728. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 2002, 65, 104104. [Google Scholar] [CrossRef]
- Mera, A.; Rehman, M.A. First-principles investigation for the hydrogen storage properties of AeSiH3 (Ae = Li, K, Na, Mg) perovskite-type hydrides. Int. J. Hydrogen Energy 2024, 50, 1435–1447. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Gencer, A.; Surucu, G. Investigation of structural, electronic and lattice dynamical properties of XNiH3 (X = Li, Na and K) perovskite type hydrides and their hydrogen storage applications. Int. J. Hydrogen Energy 2019, 44, 15173–15182. [Google Scholar] [CrossRef]
- Sandrock, G.; Gross, K.; Thomas, G.; Jensen, C.; Meeker, D.; Takara, S. Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage. J. Alloys Compd. 2002, 330–332, 696–701. [Google Scholar] [CrossRef]
- Noreus, D.; Olsson, L.G.; Werner, P.-E. The structure and dynamics of hydrogen in LaNi5H6 studied by elastic and inelastic neutron scattering. J. Phys. F Met. Phys. 1983, 13, 715–727. [Google Scholar] [CrossRef]
- Baaddi, M.; Chami, R.; Baalla, O.; El Quaoubi, S.; Saadi, A.; Omari, L.E.H.; Chafi, M. The effect of strain on hydrogen storage characteristics in K2NaAlH6 double perovskite hydride through first principle method. Environ. Sci. Pollut. Res. 2024, 31, 62056–62064. [Google Scholar] [CrossRef]
- Lakhal, M.; Bhihi, M.; Labrim, H.; Benyoussef, A.; Naji, S.; Belhaj, A.; Khalil, B.; Abdellaoui, M.; Mounkachi, O.; Loulidi, M.; et al. Kinetic Monte Carlo and density functional study of hydrogen diffusion in magnesium hydride MgH2. Int. J. Hydrogen Energy 2013, 38, 8350–8356. [Google Scholar] [CrossRef]
- Züttel, A.; Wenger, P.; Rentsch, S.; Sudan, P.; Mauron, P.; Emmenegger, C. LiBH4: A new hydrogen storage material. J. Power Sources 2003, 118, 1–7. [Google Scholar] [CrossRef]
- Kudiiarov, V.; Lyu, J.; Semyonov, O.; Lider, A.; Chaemchuen, S.; Verpoort, F. Prospects of hybrid materials composed of MOFs and hydride-forming metal nanoparticles for light-duty vehicle hydrogen storage. Appl. Mater. Today 2021, 25, 101208. [Google Scholar] [CrossRef]
- Pugh, S.F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, M.G.; Jia, X.F.; Wei, Q. Stable structures and properties of Ru2Al5. Chin. Phys. B 2025, 34, 016301. [Google Scholar] [CrossRef]
- Chen, X.Q.; Niu, H.; Li, D.; Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
- Sun, Z.; Music, D.; Ahuja, R.; Schneider, J.M. Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides. Phys. Rev. B 2005, 71, 193402. [Google Scholar] [CrossRef]
- Fine, M.E.; Brown, L.D.; Marcus, H.L. Elastic constants versus melting temperature in metals. Scr. Metall. 1984, 18, 951–956. [Google Scholar] [CrossRef]
- Hadi, M.A.; Christopoulos, S.R.G.; Naqib, S.H.; Chroneos, A.; Fitzpatrick, M.E.; Islam, A.K.M.A. Physical properties and defect processes of M3SnC2 (M = Ti, Zr, Hf) MAX phases: Effect of M-elements. J. Alloys Compd. 2018, 748, 804–813. [Google Scholar] [CrossRef]
- Roknuzzaman, M.; Hadi, M.A.; Abden, M.J.; Nasir, M.T.; Islam, A.K.M.A.; Ali, M.S.; Ostrikov, K.; Naqib, S.H. Physical properties of predicted Ti2CdN versus existing Ti2CdC MAX phase: An ab initio study. Comput. Mater. Sci. 2016, 113, 148–153. [Google Scholar] [CrossRef]
- Chowdhury, A.; Ali, M.A.; Hossain, M.M.; Uddin, M.M.; Naqib, S.H.; Islam, A.K.M.A. Predicted MAX phase Sc2InC: Dynamical stability, vibrational and optical properties. Phys. Status Solidi B 2018, 255, 1700235. [Google Scholar] [CrossRef]
- Ali, M.; Hossain, M.; Uddin, M.; Hossain, M.A.; Islam, A.K.M.A.; Naqib, S.H. Physical properties of new MAX phase borides M2SB (M = Zr, Hf and Nb) in comparison with conventional MAX phase carbides M2SC (M = Zr, Hf and Nb): Comprehensive insights. J. Mater. Res. Technol. 2021, 11, 1000–1018. [Google Scholar] [CrossRef]
- Ali, M.; Hossain, M.; Uddin, M.; Islam, A.K.M.A.; Jana, D.; Naqib, S.H. DFT insights into new B-containing 212 MAX phases: Hf2AB2 (A = In, Sn). J. Alloys Compd. 2021, 860, 158408. [Google Scholar] [CrossRef]
- Wei, Q.; Yang, J.X.; Jia, X.F.; Luo, J.; Zhang, M.G.; Zhu, X.M. Crystal structures, mechanical properties, and electronic structure analysis of ternary FeCrAl alloys. Phys. Lett. A 2025, 533, 130228. [Google Scholar] [CrossRef]
- Bashir, A.I.; Arif, H.; Azam, S.; Irfan, M.; Khan, N. First-principles quantum computations to investigate prospects of Mg2FeH6 for optoelectronics and hydrogen-storage applications. Int. J. Hydrogen Energy 2023, 48, 23930–23942. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Huang, F.J.; Ruan, J.Q.; Zhao, Y.F.; Zhang, X.F.; Xiong, K.; He, Y. Two-dimensional Pm1 Ca3N2, Ba3P2, and Ba3As2: Promising stable narrow-gap semiconductors for infrared and broadband photodetectors. Phys. Rev. Appl. 2024, 22, 034013. [Google Scholar] [CrossRef]
- Ali, M.; Bibi, Z.; Younis, M.W.; Mubashir, M.; Iqbal, M.; Ali, M.U.; Iqbal, M.A. An accurate prediction of electronic structure, mechanical stability and optical response of BaCuF3 fluoroperovskite for solar cell application. Sol. Energy 2024, 267, 112199. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Lobanovski, L.S.; Bushinsky, M.V.; Khomchenko, V.A.; Fedotova, V.V.; Troyanchuk, I.O.; Szymczak, H. Microstructure evolution and magnetoresistance of the A-site ordered Ba-doped manganites. Semiconductors 2007, 41, 507–511. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Vasiliev, A.N.; Balagurov, A.M.; Szymczak, H. Magnetic state of the structurally separated anion-deficient La0.70Sr0.30MnO2.85 manganite. J. Exp. Theor. Phys. 2011, 113, 819–825. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Turchenko, V.A.; Trukhanov, S.V.; Kostishin, V.G.; Damay, F.; Porcher, F.; Klygach, D.S.; Vakhitov, M.G.; Lyakhov, D.; Michels, D.; Bozzo, B.; et al. Features of structure, magnetic state and electrodynamic performance of SrFe12-xInxO19. Sci. Rep. 2021, 11, 18342. [Google Scholar] [CrossRef]
Structures | Possible Decomposition Path | Ef |
---|---|---|
Mg2CsH9 | Mg2CsH9 = 2MgH2 + CsH + 2H2 | −0.118 |
Mg2RbH9 | Mg2RbH9 = 2MgH2 + RbH + 2H2 | −0.165 |
Parameters | Mg2CsH9 | Mg2RbH9 |
---|---|---|
8.867 | 8.663 | |
697.1 | 650.1 | |
−0.387 | −0.382 | |
19.6 | 20.9 | |
10.1 | 11.1 | |
14.1 | 14.6 | |
4.76 | 6.34 | |
86.46 | 92.70 | |
286 | 282 |
Parameters | Mg2CsH9 | Mg2RbH9 |
---|---|---|
13.3 | 14.4 | |
22.3 | 23.3 | |
9.1 | 9.5 | |
2.97 | 2.96 | |
1.46 | 1.52 | |
0.22 | 0.23 | |
1.68 | 1.56 | |
613 | 618 | |
0.95 | 0.98 | |
2.49 | 2.82 | |
303 | 352 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wei, Q.; Luo, J.; Jia, X.; Zhang, M.; Zhu, X. Structural, Mechanical, Electronic, and Optical Properties of Hydrogen-Storage Magnesium-Based Mg2XH9 (X = Cs, Rb). Materials 2025, 18, 3829. https://doi.org/10.3390/ma18163829
Li W, Wei Q, Luo J, Jia X, Zhang M, Zhu X. Structural, Mechanical, Electronic, and Optical Properties of Hydrogen-Storage Magnesium-Based Mg2XH9 (X = Cs, Rb). Materials. 2025; 18(16):3829. https://doi.org/10.3390/ma18163829
Chicago/Turabian StyleLi, Wenhui, Qun Wei, Jing Luo, Xiaofei Jia, Meiguang Zhang, and Xuanmin Zhu. 2025. "Structural, Mechanical, Electronic, and Optical Properties of Hydrogen-Storage Magnesium-Based Mg2XH9 (X = Cs, Rb)" Materials 18, no. 16: 3829. https://doi.org/10.3390/ma18163829
APA StyleLi, W., Wei, Q., Luo, J., Jia, X., Zhang, M., & Zhu, X. (2025). Structural, Mechanical, Electronic, and Optical Properties of Hydrogen-Storage Magnesium-Based Mg2XH9 (X = Cs, Rb). Materials, 18(16), 3829. https://doi.org/10.3390/ma18163829