Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Mix Design and Preparation
2.3. Testing Methods
3. Results and Discussions
3.1. Damage and Flexural Load–Deflection Response
3.2. Flexural Strength
3.3. Deformation Capacity
3.4. Flexural Toughness
3.5. SEM Analysis
4. Conclusions
- (1)
- The designed geopolymer shows excellent residual flexural behavior using optimized metakaolin/fly ash blended precursors, a potassium silicate alkali activator and corundum aggregates. The flexural strength innovatively exhibits a continuously enhanced trend from 10 MPa at 20 °C to 25.9 MPa after 1000 °C exposure. This enhancement is mainly attributed to thermally induced further geopolymerization and ceramic-like crystalline phase formation due to viscous sintering.
- (2)
- Introducing single 5% wollastonite fibers slightly increases the initial and residual flexural strength of geopolymer due to the thermal stability and microscale bridging effect, especially in the case of high temperature conditions. But it fails to change the residual flexural peak deflection, toughness and brittle failure.
- (3)
- The utilization of binary wollastonite and basalt fibers in geopolymer generally results in similar and comparable initial and residual flexural load-displacement responses compared with the mixture with wollastonite fiber, while the residual flexural strength is obviously improved after 400–800 °C exposures compared with the reference geopolymer due to the inherent high temperature resistance of basalt fiber.
- (4)
- The 5% wollastonite and 1% steel fiber-reinforced geopolymer presents remarkable improvements on flexural strength, deformation capacity and toughness before and after high temperature exposures. A higher steel fiber content in W5S2 could further reinforce the flexural strength and toughness of geopolymer exposed to 20–800 °C. The highest flexural strength and toughness occur after 400 °C exposure, namely at approximately 39.8 MPa and 43.7 N∙m, respectively. But too high a steel fiber content such as 2% even has a negative effect on flexural properties at 1000 °C exposure because of the severe oxidation deterioration and thermal incompatibility.
- (5)
- The ternary hybrid fibers in geopolymers exhibit a positive synergistic effect on the flexural strength and toughness at 20–600 °C and maintain comparable properties at 800–1000 °C compared with the binary hybrid fibers in W5B1 and W5S1.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Wang, J.; Li, X.; Shen, F. Mechanical Properties and Flexural Toughness Evaluation Method of Steel Fiber Reinforced Concrete after Exposure to Elevated Temperatures. Constr. Build. Mater. 2025, 469, 140504. [Google Scholar] [CrossRef]
- Li, P.; Jiang, J.; Liu, G.; Ren, Z. Physical, Mechanical, Thermal and Sustainable Properties of UHPC with Converter Steel Slag Aggregates. Case Stud. Constr. Mater. 2022, 17, e01458. [Google Scholar] [CrossRef]
- Tiwary, A.K.; Singh, S.; Kumar, R.; Chohan, J.S.; Sharma, S.; Singh, J.; Li, C.; Ilyas, R.A.; Asyraf, M.R.M.; Malik, M.A. Effects of Elevated Temperature on the Residual Behavior of Concrete Containing Marble Dust and Foundry Sand. Materials 2022, 15, 3632. [Google Scholar] [CrossRef]
- Shaikh, F.U.A.; Kahlon, N.S.; Dogar, A.U.R. Effect of Elevated Temperature on the Behavior of Amorphous Metallic Fibre-Reinforced Cement and Geopolymer Composites. Fibers 2023, 11, 31. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L. Repair of Fire-Damaged Reinforced Concrete Members with Axial Load: A Review. Sustainability 2019, 11, 963. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, H.; Wang, Z.; Li, G. Experimental and Theoretical Study on Flexural Behavior of GFRP- and CFRP-Reinforced Concrete Beams after High-Temperature Exposure. Polymers 2022, 14, 4002. [Google Scholar] [CrossRef]
- Prasad, B.V.; Anand, N.; Kiran, T.; Balamurali; Kumar, J.; Cashell, K.A.; Andrushia, D. Residual Behaviour of Fibre Reinforced Geopolymer Concrete Following Exposure to a Standard Fire. Structures 2024, 69, 107358. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers and Geopolymeric Materials. J. Therm. Anal. 1989, 35, 429–441. [Google Scholar] [CrossRef]
- Azunna, S.U.; Aziz, F.N.A.A.; Rashid, R.S.M. Review on Structural Characteristics of Reinforced Geopolymer Concrete. Prog. Eng. Sci. 2025, 2, 100083. [Google Scholar] [CrossRef]
- Gailitis, R.; Pakrastins, L.; Sprince, A.; Radina, L.; Sakale, G.; Miernik, K. Different Fiber Reinforcement Effects on Fly Ash-Based Geopolymer Long-Term Deflection in Three-Point Bending and Microstructure. Materials 2022, 15, 8512. [Google Scholar] [CrossRef]
- Monfardini, L.; Facconi, L.; Minelli, F. Experimental Tests on Fiber-Reinforced Alkali-Activated Concrete Beams under Flexure: Some Considerations on the Behavior at Ultimate and Serviceability Conditions. Materials 2019, 12, 3356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Trindade, A.C.C.; Liebscher, M.; de Andrade Silva, F.; Mechtcherine, V. A Review of the Role of Elevated Temperatures on the Mechanical Properties of Fiber-Reinforced Geopolymer (FRG) Composites. Cem. Concr. Compos. 2023, 137, 104885. [Google Scholar] [CrossRef]
- Arioz, O. Effects of Elevated Temperatures on Properties of Concrete. Fire Saf. J. 2007, 42, 516–522. [Google Scholar] [CrossRef]
- Zhang, H.; Kumar Sarker, P.; Wang, Q.; He, B.; Chandra Kuri, J.; Jiang, Z. Comparison of Compressive, Flexural, and Temperature-Induced Ductility Behaviours of Steel-PVA Hybrid Fibre Reinforced OPC and Geopolymer Concretes after High Temperatures Exposure. Constr. Build. Mater. 2023, 399, 132560. [Google Scholar] [CrossRef]
- Li, P.P.; Sluijsmans, M.J.C.; Brouwers, H.J.H.; Yu, Q.L. Functionally Graded Ultra-High Performance Cementitious Composite with Enhanced Impact Properties. Compos. Part B Eng. 2020, 183, 107680. [Google Scholar] [CrossRef]
- Li, P.P.; Cao, Y.Y.Y.; Sluijsmans, M.J.C.; Brouwers, H.J.H.; Yu, Q. Synergistic Effect of Steel Fibres and Coarse Aggregates on Impact Properties of Ultra-High Performance Fibre Reinforced Concrete. Cem. Concr. Compos. 2021, 115, 103866. [Google Scholar] [CrossRef]
- Vijaya Prasad, B.; Anand, N.; Kanagaraj, B.; Kiran, T.; Lubloy, E.; Naser, M.Z.; Arumairaj, P.D.; Andrushia, D. Investigation on Residual Bond Strength and Microstructure Characteristics of Fiber-Reinforced Geopolymer Concrete at Elevated Temperature. Case Stud. Constr. Mater. 2023, 19, e02526. [Google Scholar] [CrossRef]
- Soares Junior, P.R.R.; de Souza Maciel, P.; Corrêa, E.C.S.; da Silva Bezerra, A.C. A Multiscale Investigation on the Performance Improvement of Fiber-Reinforced Cementitious Composites after Exposure to High Temperatures. Cem. Concr. Compos. 2022, 133, 104657. [Google Scholar] [CrossRef]
- Zhang, P.; Han, X.; Hu, S.; Wang, J.; Wang, T. High-Temperature Behavior of Polyvinyl Alcohol Fiber-Reinforced Metakaolin/Fly Ash-Based Geopolymer Mortar. Compos. Part B Eng. 2022, 244, 110171. [Google Scholar] [CrossRef]
- Constâncio Trindade, A.C.; Liebscher, M.; Curosu, I.; de Andrade Silva, F.; Mechtcherine, V. Influence of Elevated Temperatures on the Residual and Quasi In-Situ Flexural Strength of Strain-Hardening Geopolymer Composites (SHGC) Reinforced with PVA and PE Fibers. Constr. Build. Mater. 2022, 314, 125649. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, S.; Wang, Y.; Mao, M.; Li, J.; Yang, Q. High-Temperature Behaviour of Geopolymer Composites Containing Carbon Fibre and Nano-Silica: Mechanical, Microstructure, and Air-Void Characteristics. Constr. Build. Mater. 2024, 451, 138690. [Google Scholar] [CrossRef]
- Cao, Y.Y.Y.; Yu, Q.L.; Brouwers, H.J.H.; Chen, W. Predicting the Rate Effects on Hooked-End Fiber Pullout Performance from Ultra-High Performance Concrete (UHPC). Cem. Concr. Res. 2019, 120, 164–175. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Yan, Y. A Note on the Flexural Behavior of Concrete under Different Loading Rates. KSCE J. Civ. Eng. 2015, 19, 664–666. [Google Scholar] [CrossRef]
- Li, S.; Jensen, O.M.; Yu, Q. Mechanism of Rate Dependent Behaviour of Ultra-High Performance Fibre Reinforced Concrete Containing Coarse Aggregates under Flexural Loading. Constr. Build. Mater. 2021, 301, 124055. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, R.; Ran, X.; Li, P. A Novel Ultra-High Residual Strength-Enhanced Geopolymer Incorporated Corundum Aggregates after Elevated Temperature Exposure. Cem. Concr. Compos. 2025, 162, 106137. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.; Ou, W.; Ran, X. Conceptual Design and Properties of Ultra-High Residual Strength Geopolymer after 1000 °C Thermal Exposure. Mater. Lett. 2024, 373, 137153. [Google Scholar] [CrossRef]
- Cao, B.; Li, Y.; Li, P. Synergistic Effect of Blended Precursors and Silica Fume on Strength and High Temperature Resistance of Geopolymer. Materials 2024, 17, 2975. [Google Scholar] [CrossRef] [PubMed]
- Wongsa, A.; Wongkvanklom, A.; Tanangteerapong, D.; Chindaprasirt, P. Comparative Study of Fire-Resistant Behaviors of High-Calcium Fly Ash Geopolymer Mortar Containing Zeolite and Mullite. J. Sustain. Cem. Mater. 2020, 9, 307–321. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Lao-un, J.; Zaetang, Y.; Wongkvanklom, A.; Phoo-ngernkham, T.; Wongsa, A.; Sata, V. Thermal Insulating and Fire Resistance Performances of Geopolymer Mortar Containing Auto Glass Waste as Fine Aggregate. J. Build. Eng. 2022, 60, 105178. [Google Scholar] [CrossRef]
- Zhang, P.; Feng, Z.; Guo, J.; Zheng, Y.; Yuan, P. Mechanical Behavior and Microscopic Damage Mechanism of Hybrid Fiber-Reinforced Geopolymer Concrete at Elevated Temperature. Ceram. Int. 2024, 50, 53851–53866. [Google Scholar] [CrossRef]
- Dey, V.; Kachala, R.; Bonakdar, A.; Mobasher, B. Mechanical Properties of Micro and Sub-Micron Wollastonite Fibers in Cementitious Composites. Constr. Build. Mater. 2015, 82, 351–359. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, W.; Zheng, L.; Zheng, J. Mechanical Properties of Steel Fiber-Reinforced Geopolymer Concrete after High Temperature Exposure. Constr. Build. Mater. 2024, 439, 137394. [Google Scholar] [CrossRef]
- Farag Gaddafi, A.K.; Johnson Alengaram, U.; Muhamad Bunnori, N.; Ibrahim Muhammad, S.I.; Ibrahim, S.; Sumesh, M. Mechanical Properties, Flexural Behaviour, and Ductility Characteristics of Fibre-Reinforced Geopolymer Mortar. Constr. Build. Mater. 2023, 403, 133109. [Google Scholar] [CrossRef]
- Li, Y.; Yang, E.H.; Tan, K.H. Flexural Behavior of Ultra-High Performance Hybrid Fiber Reinforced Concrete at the Ambient and Elevated Temperature. Constr. Build. Mater. 2020, 250, 118487. [Google Scholar] [CrossRef]
- He, J.; Wang, H.; Yu, Q. Flexural Fracture Behavior of Ultra-High Performance Concrete after High-Temperature Exposure. Constr. Build. Mater. 2025, 481, 141544. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Jamnam, S.; Sappakittipakorn, M.; Fujikake, K.; Chindaprasirt, P. Residual Flexural Behavior of Fiber Reinforced Concrete after Heating. Mater. Struct. Constr. 2018, 51, 98. [Google Scholar] [CrossRef]
- Li, P.; Jiang, R.; Cao, B. Thermal Stability of Blended-Precursor Geopolymer Activated by Silica Fume-Derived Alternative Water Glass. Mater. Lett. 2025, 396, 138795. [Google Scholar] [CrossRef]
- Chen, H.J.; Yu, Y.L.; Tang, C.W. Mechanical Properties of Ultra-High Performance Concrete before and after Exposure to High Temperatures. Materials 2020, 13, 770. [Google Scholar] [CrossRef] [PubMed]
Oxide (%) | SiO2 | Al2O3 | CaO | MgO | Fe2O3 | K2O | TiO2 | Others |
---|---|---|---|---|---|---|---|---|
FA | 60.91 | 31.09 | 3.29 | 0.38 | 0.3 | 1.29 | 0.92 | 1.02 |
MK | 49.58 | 48.21 | 0.11 | - | 0.47 | 0.12 | 0.91 | 0.40 |
WF | 48.67 | 0.24 | 49.74 | 0.69 | 0.37 | 0.04 | - | 0.25 |
Mix No. | FA | MK | CA | WG | Water | WF | BF | SF |
---|---|---|---|---|---|---|---|---|
F0 | 456.8 | 195.8 | 1762 | 252.4 | 99.9 | 0 | 0 | 0 |
W5 | 456.8 | 195.8 | 1762 | 252.4 | 99.9 | 32.6 | 0 | 0 |
W5B1 | 456.8 | 195.8 | 1762 | 252.4 | 99.9 | 32.6 | 27 | 0 |
W5S1 | 456.8 | 195.8 | 1762 | 252.4 | 99.9 | 32.6 | 0 | 78.5 |
W5S2 | 456.8 | 195.8 | 1762 | 252.4 | 99.9 | 32.6 | 0 | 157 |
W5B0.5S1 | 456.8 | 195.8 | 1762 | 252.4 | 99.9 | 32.6 | 13.5 | 78.5 |
W5B1S1 | 456.8 | 195.8 | 1762 | 252.4 | 99.9 | 32.6 | 27 | 78.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Jiang, R.; Li, Y.; Li, P. Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure. Materials 2025, 18, 3572. https://doi.org/10.3390/ma18153572
Xiong Y, Jiang R, Li Y, Li P. Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure. Materials. 2025; 18(15):3572. https://doi.org/10.3390/ma18153572
Chicago/Turabian StyleXiong, Yiyang, Ruiwen Jiang, Yi Li, and Peipeng Li. 2025. "Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure" Materials 18, no. 15: 3572. https://doi.org/10.3390/ma18153572
APA StyleXiong, Y., Jiang, R., Li, Y., & Li, P. (2025). Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure. Materials, 18(15), 3572. https://doi.org/10.3390/ma18153572