Effects of Defocus Distance and Weld Spacing on Microstructure and Properties of Femtosecond Laser Welded Quartz Glass-TC4 Alloy Joints with Residual Stress Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Base Materials and Welding Method
2.2. XRD-RSM
- The direction of laser impulse (DLI, Phi = 90°),
- The direction of spacing (DS, Phi = 180°).
2.3. HRTEM Observasion and GPA
3. Results and Discussion
3.1. Microstructure
3.2. Mechanical Properties
4. Conclusions
- The quartz glass-TC4 joint primarily consists of parallel laser-welded zones interspersed with BMs. Cracks appeared in specimens with +0.2 mm defocus distance or 20 μm weld spacing, which arises from micro-deformations generated during the melting and solidification of base metals. The diffusion of Si, O, and Ti elements occurs at the interface, indicating the sufficient flow and mixing of elements from the two base materials during the welding process. EDS results featured metallurgical bonding within WZs and van der Waals forces at WZ/BM interfaces.
- The defocusing distance of the femtosecond laser predominantly influences the depth and phase composition of the WZs. As the focal position moves downward, increased energy absorption by the TC4 BM leads to significant expansion in both width and depth of the WZs, and subsequently influences effective bonding area and thermal mismatch conditions around the joint.
- The shear strength of the joints initially increases and then decreases with increasing defocus distance and weld spacing. The maximum strength of 14.4 MPa was achieved at defocus distance of +0.1 mm and weld spacing of 40 μm. The XRD-RSM and GPA results demonstrate that variations in both parameters significantly influence the thermal expansion behavior of the BMs. Specifically, as the weld spacing decreases, the DS residual stress exhibit pronounced fluctuations. This phenomenon indicates that complex deformation occurs in the TC4 BM during post-weld cooling, which subjects the interfacial quartz BM to repeated impact-induced cracking, ultimately compromising the joint’s mechanical performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamrin, K.F.; Nukman, Y.; Zakariyah, S.S. Laser lap joining of dissimilar materials—A review of factors affecting joint strength. Mater. Manuf. Process. 2013, 28, 857–871. [Google Scholar] [CrossRef]
- Carter, R.M.; Troughton, M.; Chen, J.; Elder, I.; Thomson, R.R.; Daniel Esser, M.J.; Lamb, R.A.; Hand, D.P. Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloy. Appl. Opt. 2017, 56, 4873–4881. [Google Scholar] [CrossRef] [PubMed]
- Lafon, R.E.; Li, S.; Micalizzi, F.; Lebair, S. Ultrafast laser bonding of glasses and crystals to metals for epoxy-free optical instruments. In Proceedings of the SPIE LASE, San Francisco, CA, USA, 1–6 February 2020; Volume 11261, p. 1126103. [Google Scholar] [CrossRef]
- Miyamoto, I.; Cvecek, K.; Schmidt, M. Advances of laser welding technology of glass-science and technology. J. Laser Micro/Nano Eng. 2020, 15, 63–76. [Google Scholar] [CrossRef]
- Ligaj, B.; Wirwicki, M.; Karolewska, K.; Jasińska, A. Experimental studies of glued aluminum-glass joints. IOP Conf. Ser. Mater. Sci. Eng. 2018, 344, 012014. [Google Scholar] [CrossRef]
- Watanabe, W.; Onda, S.; Tamaki, T.; Itoh, K.; Nishii, J. Space selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Appl. Phys. Lett. 2006, 89, 021106. [Google Scholar] [CrossRef]
- Chen, J.; Carter, R.M.; Thomson, R.R.; Hand, D.P. Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding. Opt. Express 2015, 23, 18645–18657. [Google Scholar] [CrossRef]
- Starikov, S.V.; Faenov, A.Y.; Pikuz, T.A.; Skobelev, I.Y.; Fortov, V.E.; Tamotsu, S.; Ishino, M.; Tanaka, M.; Hasegawa, N.; Nishikino, M.; et al. Soft picosecond X-ray laser nanomodification of gold and aluminum surfaces. Appl. Phys. B 2014, 116, 1005–1016. [Google Scholar] [CrossRef]
- Shugaev, M.V.; Wu, C.; Armbruster, O.; Naghilou, A.; Brouwer, N.; Ivanov, D.S.; Derrien, T.; Bulgakova, N.M.; Kautek, W.; Rethfeld, B.; et al. Fundamentals of ultrafast laser-material interaction. MRS Bull. 2016, 41, 960–968. [Google Scholar] [CrossRef]
- Zhang, G.D.; Cheng, G.H. Direct welding of glass and metal by 1 kHz femtosecond laser pulses. Appl. Opt. 2015, 54, 8957–8961. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, C.; Zhang, M.; Chen, W.; Zhang, W. Study on Performance and mechanism of laser joint between aluminum alloy with different thickness of microarc oxidation film and ultra thin glass. Chin. J. Lasers 2017, 44, 1202008. [Google Scholar]
- Ciuca, O.P.; Carter, R.M.; Prangnell, P.B.; Hand, D.P. Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds. Mater. Charact. 2016, 120, 53–62. [Google Scholar] [CrossRef]
- Li, P.; Xu, X.; Tan, W.; Liu, H.; Wang, X. Improvement of laser transmission welding of glass with titanium alloy by laser surface treatment. Materials 2018, 11, 2060. [Google Scholar] [CrossRef] [PubMed]
- Quintino, L.; Liu, L.; Miranda, R.M.; Silva, R.; Hu, A.; Zhou, Y. Bonding NiTi to glass with femtosecond laser pulses. Mater. Lett. 2013, 98, 142–145. [Google Scholar] [CrossRef]
- Min, Z.; Yufei, C.; Changjun, C.; Zhaoling, Q. A new sealing technology for ultra-thin glass to aluminum alloy by laser transmission welding method. Int. J. Adv. Manuf. Technol. 2021, 115, 2017–2035. [Google Scholar] [CrossRef]
- André, T.; Christian, B.; Weingarten Benedikt, S.; Emrah, U. Investigation on laser beam figuring of fused silica using microsecond pulsed CO2 laser radiation. Appl. Surf. Sci. 2021, 555, 149606. [Google Scholar] [CrossRef]
- Temmler, A.; Liu, D.; Preußner, J.; Oeser, S.; Luo, J.; Poprawe, R. Influence of laser polishing on surface roughness and microstructural properties of the remelted surface boundary layer of tool steel H11. Mater. Des. 2020, 192, 108689. [Google Scholar] [CrossRef]
- Deng, T.; Li, J.; Zheng, Z. Fundamental aspects and recent developments in metal surface polishing with energy beam irradiation. Int. J. Mach. Tools Manuf. 2020, 148, 103472. [Google Scholar] [CrossRef]
- Chambonneau, M.; Li, Q.; Fedorov, V.Y.; Blothe, M.; Schaarschmidt, K.; Lorenz, M.; Tzortzakis, S.; Nolte, S. Taming ultrafast laser filaments for optimized semiconductor-metal welding. Laser Photonics Rev. 2021, 15, 2000433. [Google Scholar] [CrossRef]
- Mareev, E.I.; Lvov, K.V.; Rumiantsev, B.V.; Migal, E.A.; Novikov, I.; Stremoukhov, S.Y.; Potemkin, F.V. Effect of pulse duration on the energy delivery under nonlinear propagation of tightly focused Cr: Forsterite laser radiation in bulk silicon. Laser Phys. Lett. 2020, 17, 015402. [Google Scholar] [CrossRef]
- Rumiantsev, B.; Mareev, E.; Bychkov, A.; Makarov, V.; Karabutov, A.; Cherepetskaya, E.; Potemkin, F. Photoacoustic and optical imaging of the femtosecond filament in water. In Proceedings of the SPIE Optics + Optoelectronics, Prague, Czech Republic, 1–4 April 2019; Volume 11026, p. 1102606. [Google Scholar] [CrossRef]
- Petrakakis, E.; Tsibidis, G.D.; Stratakis, E. Modelling of the ultrafast dynamics and surface plasmon properties of silicon upon irradiation with mid-IR femtosecond laser pulses. Phys. Rev. B 2019, 99, 195201. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.; Huang, Y.; Yu, X.; Fan, D. Interface characteristic of Zr-based metallic glass and copper by laser pulse welding. J. Non-Cryst. Solids 2023, 612, 122358. [Google Scholar] [CrossRef]
- Ozeki, Y.; Inoue, T.; Tamaki, T.; Yamaguchi, H.; Onda, S.; Watanabe, W.; Sano, T.; Nishiuchi, S.; Hirose, A.; Itoh, K. Direct Welding between Copper and Glass Substrates with Femto- second Laser Pulses. Appl. Phys. Express 2008, 1, 082601. [Google Scholar] [CrossRef]
- Fujiwara, J.; Tamaki, T. Measuring sealing degree of welded glass substrates after ultrafast laser microwelding. Appl. Phys. A 2022, 128, 1076. [Google Scholar] [CrossRef]
- Zhan, J.; Gao, Y.H.; Sun, J.X.; Zhu, W.H.; Wang, S.M.; Jiang, L.; Li, X. Mechanism and optimization of femtosecond laser welding fused silica and aluminum. J. Appl. Surf. Sci. 2023, 640, 158327. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Tang, X.; Liu, M.; Li, S.; Wang, G.; Li, L. Effect of Pulse Energy on the Microstructure and Mechanical Properties of the Non-Optical Contact Femtosecond Laser Welding of Quartz Glass and the TC4 Alloy. Metals 2025, 15, 159. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, L.; Ni, D.; Zhao, H.; Han, X.; Xue, P.; Xiao, B.; Ma, Z. Effect of Post Weld Heat Treatment on Residual Stress and Mechanical Properties of 106 mm Thick TC4 Titanium Alloy Electron Beam Welded Joints. Acta Metall. Sin. (Engl. Lett.) 2025, 38, 1083–1094. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Tang, X.; Liu, M.; Li, S.; Wang, G.; Li, L. Study on microstructure and mechanical properties of femtosecond laser welding of non-optical contact quartz glass and Zr-4. J. Mater. Lett. 2025, 382, 137832. [Google Scholar] [CrossRef]
- Zhang, L.X.; Chang, Q.; Sun, Z.; Feng, J.C. Wetting and interfacial reaction between liquid Ag-Cu-Ti and SiO2f/SiO2 composites. Vacuum 2020, 171, 109042. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Z.; Wen, J.; Wu, H.; Li, L.; Ma, X. The characteristics and dynamics of fused silica-aluminum alloy welding during mJ-level femtosecond laser. Mater. Des. 2024, 239, 112790. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Z.; Xu, T.; Wu, H.; Ma, X. Enhanced joint through significant diffusion and molten pool regions in fused silica to aluminum alloy welding by femtosecond mJ-pulses. Int. J. Adv. Manuf. Technol. 2023, 129, 601–610. [Google Scholar] [CrossRef]
- Puerto, D.; Gawelda, W.; Siegel, J.; Bonse, J.; Bachelier, G.; Solis, J. Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses. Appl. Phys. A 2008, 92, 803–808. [Google Scholar] [CrossRef]
- Roberto, A.; Jacinto, U. Endowing Griffith’s fracture theory with the ability to describe fatigue cracks. Eng. Fract. Mech. 2023, 281, 109048. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, S.; Ji, X.; Liang, S. Model-Based Sensitivity Analysis of the Temperature in Laser Powder Bed Fusion. Materials 2024, 17, 2565. [Google Scholar] [CrossRef]
Base Materials | Ti | Si | O | Al | V | Fe |
---|---|---|---|---|---|---|
TC4 alloy | 87.4~91 | <0.01 | <0.16 | 5.5~6.8 | 3.5~4.5 | <0.4 |
Quartz glass | / | 46.5~46.7 | 53.2~53.4 | / | / | 0.01~0.03 |
Groups of Samples | Power/W | Speed/mm·s−1 | Frequency/kHz | Defocus Distance (f)/mm | Weld Spacing (d)/µm |
---|---|---|---|---|---|
1 | −0.1 | 40 | |||
2 | 0 | 40 | |||
3 | +0.1 | 40 | |||
4 | 3 | 50 | 10 | +0.2 | 40 |
5 | +0.1 | 20 | |||
6 | +0.1 | 30 | |||
7 | +0.1 | 50 |
Position | a | b | c | d |
---|---|---|---|---|
Element O (a.t.%) | 45.22 | 36.50 | 25.50 | 20.50 |
Element Si (a.t.%) | 34.31 | 26.81 | 18.81 | 3.81 |
Element Ti (a. t.%) | 20.46 | 36.69 | 55.69 | 75.69 |
Secondary phases | SiO2, TiSi2 | SiO2, TiSi2 | TiSi2, TiO2 | TiSi2, TiO2 |
Defocus Amount (f)/mm | Weld Spacing (d)/µm | Residual Stress of DLI/MPa | Residual Stress of DS/MPa |
---|---|---|---|
−0.1 | 40 | 32.1 ± 1.6 | 1.5 ± 1.3 |
0 | 40 | 65.4 ± 3.2 | −2.9 ± 2.1 |
+0.1 | 40 | 73.2 ± 5.6 | −4.8 ± 2.6 |
+0.2 | 40 | 96.3 ± 4.5 | −5.5 ± 2.4 |
+0.1 | 20 | 74.5 ± 3.1 | −8.3 ± 19.8 |
+0.1 | 30 | 76.6 ± 4.9 | −6.1 ± 9.6 |
+0.1 | 50 | 69.5 ± 3.2 | 3.0 ± 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zhang, R.; Xu, X.; Yuan, R.; Lv, X.; Fan, C. Effects of Defocus Distance and Weld Spacing on Microstructure and Properties of Femtosecond Laser Welded Quartz Glass-TC4 Alloy Joints with Residual Stress Analysis. Materials 2025, 18, 3390. https://doi.org/10.3390/ma18143390
Wang G, Zhang R, Xu X, Yuan R, Lv X, Fan C. Effects of Defocus Distance and Weld Spacing on Microstructure and Properties of Femtosecond Laser Welded Quartz Glass-TC4 Alloy Joints with Residual Stress Analysis. Materials. 2025; 18(14):3390. https://doi.org/10.3390/ma18143390
Chicago/Turabian StyleWang, Gang, Runbo Zhang, Xiangyu Xu, Ren Yuan, Xuteng Lv, and Chenglei Fan. 2025. "Effects of Defocus Distance and Weld Spacing on Microstructure and Properties of Femtosecond Laser Welded Quartz Glass-TC4 Alloy Joints with Residual Stress Analysis" Materials 18, no. 14: 3390. https://doi.org/10.3390/ma18143390
APA StyleWang, G., Zhang, R., Xu, X., Yuan, R., Lv, X., & Fan, C. (2025). Effects of Defocus Distance and Weld Spacing on Microstructure and Properties of Femtosecond Laser Welded Quartz Glass-TC4 Alloy Joints with Residual Stress Analysis. Materials, 18(14), 3390. https://doi.org/10.3390/ma18143390