Effect of Temperature on the Low-Cycle Fatigue Behavior of Polycrystalline TiAl Alloys
Abstract
1. Introduction
2. Modeling and Simulation
3. Results and Discussion
3.1. Cyclic Loading Stress Response
3.2. Dislocation Evolution Under Cyclic Loading
3.3. Evolution of Cyclic Loading Organization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, G.; Tang, B.; Zhao, S.; Wang, W.Y.; Chen, X.; Zhu, L.; Li, J. Evading the strength-ductility trade-off at room temperature and achieving ultrahigh plasticity at 800 °C in a TiAl alloy. Acta Mater. 2022, 225, 117585. [Google Scholar] [CrossRef]
- Chen, G.; Peng, Y.; Zheng, G.; Qi, Z.; Wang, M.; Yu, H.; Dong, C.; Liu, C.T. Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat. Mater. 2016, 15, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Bewlay, B.P.; Nag, S.; Suzuki, A.; Weimer, M.J. TiAl alloys in commercial aircraft engines. Mater. High Temp. 2016, 33, 549–559. [Google Scholar] [CrossRef]
- Dzogbewu, T.C.; du Preez, W.B. Additive manufacturing of Ti-based intermetallic alloys: A review and conceptualization of a next-generation machine. Materials 2021, 14, 4317. [Google Scholar] [CrossRef]
- Godfrey, A.; Hu, D.; Loretto, M.H. The role of the α2phase in the transmission of slip in lamellar TiAl-based alloys. Philos. Mag. A 1998, 77, 287–297. [Google Scholar] [CrossRef]
- Xiang, H.; Chen, Y.; Qi, Z.; Zheng, G.; Chen, F.; Cao, Y.; Liu, X.; Zhou, B.; Chen, G. Mechanical behavior of TiAl alloys. Sci. China Technol. Sci. 2023, 66, 2457–2480. [Google Scholar] [CrossRef]
- Ellard, J.J.M.; Mathabathe, M.N.; Siyasiya, C.W.; Bolokang, A.S. Low-Cycle Fatigue Behaviour of Titanium-Aluminium-Based Intermetallic Alloys: A Short Review. Metals 2023, 13, 1491. [Google Scholar] [CrossRef]
- Mughrabi, H. Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage. Metall. Mater. Trans. B 2009, 40, 431–453. [Google Scholar] [CrossRef]
- Saifutdinov, I.; Lebedev, V.G. Self-similar approximation for the process of formation of microporosity in alloys of light metals. J. Eng. Phys. Thermophys. 2013, 86, 696–705. [Google Scholar] [CrossRef]
- Pequet, C.; Rappaz, M.; Gremaud, M. Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: Applications to aluminum alloys. Metall. Mater. Trans. A 2002, 33, 2095–2106. [Google Scholar] [CrossRef]
- Umakoshi, Y.; Yasuda, H.; Nakano, T. Plastic anisotropy and fracture behavior of cyclically deformed TiAl polysynthetically twinned crystals. Mater. Sci. Eng. A 1995, 192, 511–517. [Google Scholar] [CrossRef]
- Yasuda, H.Y.; Nakano, T.; Nakazawa, J.; Umakoshi, Y. Effect of V and Nb addition on the fatigue behaviour of TiAl polysynthetically twinned crystals. ISIJ Int. 1997, 37, 1210–1217. [Google Scholar] [CrossRef]
- Yasuda, H.; Nakano, T.; Umakoshi, Y. Thermal stability of deformation substructure of cyclically deformed TiAl PST crystals. Intermetallics 1996, 4, 289–298. [Google Scholar] [CrossRef]
- Park, Y.S.; Nam, S.W.; Hwang, S.K.; Kim, N.J. The effect of the applied strain range on fatigue cracking in lamellar TiAl alloy. J. Alloys Compd. 2002, 335, 216–223. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, M.; Ye, T.; Liang, Y.; Ren, Y.; Dong, C.; Lin, J. Microstructure stability and micro-mechanical behavior of as-cast gamma-TiAl alloy during high-temperature low cycle fatigue. Acta Mater. 2018, 145, 504–515. [Google Scholar] [CrossRef]
- Beran, P.; Heczko, M.; Kruml, T.; Panzner, T.; van Petegem, S. Complex investigation of deformation twinning in γ-TiAl by TEM and neutron diffraction. J. Mech. Phys. Solids 2016, 95, 647–662. [Google Scholar] [CrossRef]
- Ding, J.; Tian, Y.; Wang, L.-S.; Huang, X.; Zheng, H.-R.; Song, K.; Zeng, X.-G. Micro-mechanism of the effect of grain size and temperature on the mechanical properties of polycrystalline TiAl. Comput. Mater. Sci. 2019, 158, 76–87. [Google Scholar] [CrossRef]
- Chen, S.; Aitken, Z.H.; Wu, Z.; Yu, Z.; Banerjee, R.; Zhang, Y.-W. Hall-Petch and inverse Hall-Petch relations in high-entropy CoNiFeAlxCu1-x alloys. Mater. Sci. Eng. A 2020, 773, 138873. [Google Scholar] [CrossRef]
- Fu, R.; Rui, Z.; Feng, R.; Dong, Y.; Lv, X. Effects of γ/γ lamellar interfaces on translamellar crack propagation in TiAl alloys. J. Alloys Compd. 2022, 918, 165616. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Y.; Chen, J.; Su, Y.; Ren, Y.; Wu, S.; Ding, X.; Zhao, L.; Hu, N. Investigation on the atomic level removal mechanism of diamond with intrinsically anisotropic surface. Tribol. Int. 2024, 192, 109322. [Google Scholar] [CrossRef]
- Yang, B.; Su, Y.; Wei, Q.; Li, Z.; Fourmeau, M.; Zhao, L.; Huang, C.; Hu, N.; Nelias, D. Modelling of fracture strength and toughness of 2D and 3D composites. Int. J. Mech. Sci. 2023, 258, 108562. [Google Scholar] [CrossRef]
- Malti, A.; Rashidfar, P.; Kardani, A.; Montazeri, A. Microstructural evolution and phase transitions in porous Ta/Cu alloys under high strain rates. Sci. Rep. 2025, 15, 19291. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.-G.; Fang, T.-H.; Doan, D.-Q. Cyclic plasticity and deformation mechanism of AlCrCuFeNi high entropy alloy. J. Alloys Compd. 2023, 940, 168838. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Zhu, Q.; Chen, G.; Wang, C.; Fan, G.; Qin, H.; Tian, Q.; Gan, B. Evolution of fatigue mechanical properties and micro defects in nickel-based single crystal superalloys: A molecular dynamics research. Mater. Today Commun. 2023, 34, 105044. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, H.; Tangpatjaroen, C.; Tarnsangpradit, J.; Usta, A.D.; Eriten, M.; Perepezko, J.H.; Szlufarska, I. Wear-induced microstructural evolution of ultra-fine grained (UFGs) aluminum. Acta Mater. 2021, 209, 116787. [Google Scholar] [CrossRef]
- Cao, H.; Guo, Z.; Feng, R.; Li, H.; Fu, R.; Zhou, Y.; Liu, J. Numerical simulation of nano-cutting behaviors for polycrystalline γ-TiAl alloy: The effect of grain sizes. J. Manuf. Process. 2023, 102, 169–181. [Google Scholar] [CrossRef]
- Cao, H.; Yu, Z.; Zhou, B.; Li, H.; Guo, Z.; Wang, J.; Yang, W.; Feng, R. Molecular dynamics simulation of the effect of supersonic fine particle bombardment on the mechanical behaviour of γ-TiAl alloy: The effect of grain size. Vacuum 2023, 217, 112498. [Google Scholar] [CrossRef]
- Tian, Y.; Ding, J.; Huang, X.; Zheng, H.-R.; Song, K.; Lu, S.-Q.; Zeng, X.-G. Plastic deformation mechanisms of tension-compression asymmetry of nano-polycrystalline tial: Twin boundary spacing and temperature effect. Comput. Mater. Sci. 2020, 171, 109218. [Google Scholar] [CrossRef]
- Li, P.; Chen, Y.; Liu, X.; Wang, X.H.; Chen, F.R.; Qi, Z.X.; Zheng, G.; Xiang, H.G.; Chen, G. Strengthening in gradient TiAl alloys. J. Mater. Sci. Technol. 2023, 166, 98–105. [Google Scholar] [CrossRef]
- Li, W.; Yu, W.; Xu, Q.; Zhou, J.; Nan, H.; Yin, Y.; Shen, X. Understanding the atomistic deformation mechanisms of polycrystalline γ-TiAl under nanoindentation: Effect of lamellar structure. J. Alloys Compd. 2020, 828, 154443. [Google Scholar] [CrossRef]
- Che, F.; Zhang, P.; Meng, Y.; Luo, Z.; Lin, L.; Silberschmidt, V.V. Mesoscale damage behavior and meso-macroscale correlation of low-cycle fatigue in Z2CND18.12N austenitic stainless steel. Mater. Sci. Eng. A 2022, 854, 143894. [Google Scholar] [CrossRef]
- Xiang, H.; Guo, W. Synergistic effects of twin boundary and phase boundary for enhancing ultimate strength and ductility of lamellar TiAl single crystals. Int. J. Plast. 2022, 150, 103197. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, X.; Lu, Z.; Huang, X.; He, L.; Feng, X.; Li, W.; Zhai, P.; Li, G. Size-dependent deformation mechanisms in two-phase γ-TiAl/α2-Ti3Al alloys. Scr. Mater. 2025, 254, 116330. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Zope, R.R.; Mishin, Y. Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B 2003, 68, 024102. [Google Scholar] [CrossRef]
- Bahramyan, M.; Mousavian, R.T.; Brabazon, D. Study of the plastic deformation mechanism of TRIP–TWIP high entropy alloys at the atomic level. Int. J. Plast. 2020, 127, 102649. [Google Scholar] [CrossRef]
- Shi, J.; Xu, L.; Lu, Y.; Li, L.; Chen, B.; Lu, J. Effect of interface type on deformation mechanisms of γ-TiAl alloy under different temperatures and strain rates by molecular dynamics simulation. Int. J. Solids Struct. 2024, 304, 113051. [Google Scholar] [CrossRef]
- Chen, B.; Wu, W.P.; Chen, M.X.; Guo, Y.F. Molecular dynamics study of fatigue mechanical properties and microstructural evolution of Ni-based single crystal superalloys under cyclic loading. Comput. Mater. Sci. 2020, 185, 109954. [Google Scholar] [CrossRef]
- Wu, H.N.; Xu, D.S.; Wang, H.; Yang, R. Molecular Dynamics Simulation of Tensile Deformation and Fracture of γ-TiAl with and without Surface Defects. J. Mater. Sci. Technol. 2016, 32, 1033–1042. [Google Scholar] [CrossRef]
- Feng, R.; Cao, H.; Li, H.; Rui, Z.; Yan, C. Effects of Vacancy Concentration and Temperature on Mechanical Properties of Single-Crystal γ-TiAl Based on Molecular Dynamics Simulation. High Temp. Mater. Process. 2018, 37, 113–120. [Google Scholar]
- Kiselev, S.P.; Zhirov, E.V. Molecular-dynamics simulation of the synthesis of intermetallic Ti–Al. Intermetallics 2014, 49, 106–114. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Stukowski, A.; Albe, K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 2010, 18, 085001. [Google Scholar] [CrossRef]
- Faken, D.; Jonsson, H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 1994, 2, 279–286. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Yang, H.; Li, H.; Zhang, Z.-Y.; Li, L. Warm bending mechanism of extrados and intrados of large diameter thin-walled CP-Ti tubes. Trans. Nonferrous Met. Soc. China 2014, 24, 3257–3264. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Li, D.Y. Molecular dynamics simulation of Bauschinger’s effect in deformed copper single crystal in different strain ranges. J. Appl. Phys. 2011, 110, 124911. [Google Scholar] [CrossRef]
- Wen, Z.; Pei, H.; Wang, B.; Zhang, D.; Yue, Z. The tension/compression asymmetry of a high γ′ volume fraction Nickel-based single-crystal superalloy. Mater. High Temp. 2016, 33, 68–74. [Google Scholar] [CrossRef]
- Cui, W.F.; Liu, C.M. Fracture characteristics of γ-TiAl alloy with high Nb content under cyclic loading. J. Alloys Compd. 2009, 477, 596–601. [Google Scholar] [CrossRef]
- Huang, Z.; Bowen, P.; Jones, I. Transmission electron microscopy investigation of fatigue crack tip plastic zones in a polycrystalline γ-TiAl-based alloy. Philos. Mag. A 2001, 81, 2183–2197. [Google Scholar] [CrossRef]
- Healy, C.J.; Ackland, G.J. Molecular dynamics simulations of compression–tension asymmetry in plasticity of Fe nanopillars. Acta Mater. 2014, 70, 105–112. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, B.; Zhang, L.; Zhao, J.; Gong, Z.; Ye, Q. Modulation of Phase Separation and High-Temperature Mechanical Properties by L12 Phase in AlCoCrFeMo0.05Ni2 High-Entropy Alloy. J. Alloys Compd. 2025, 1036, 181826. [Google Scholar] [CrossRef]
- Li, P.; Chu, Q.; Yan, S.; Ji, X.; Xue, K. Unsymmetry of Tension and Compression in Titanium Single-crystal Nanopillars Based on Molecular Dynamics Simulation. Rare Met. Mater. Eng. 2019, 48, 1835–1840. [Google Scholar]
- Chaudhary, S.; Sudhalkar, B.; Pai, N.; Palit, M.; Alam, Z.; Sankarasubramanian, R.; Samajdar, I.; Patra, A. A crystal plasticity-based micromechanical model for precipitate shearing: Application to cyclic softening of polycrystalline Ni-based superalloys. Int. J. Fatigue 2025, 190, 108582. [Google Scholar] [CrossRef]
- Jiang, H.; Sandlöbes, S.; Gottstein, G.; Korte-Kerzel, S. On the effect of precipitates on the cyclic deformation behavior of an Al–Mg–Si alloy. J. Mater. Res. 2017, 32, 4398–4410. [Google Scholar] [CrossRef]
- Giordana, M.F.; Alvarez-Armas, I.; Armas, A. On the Cyclic Softening Mechanisms of Reduced Activity Ferritic/Martensitic Steels. Steel Res. Int. 2012, 83, 594–599. [Google Scholar] [CrossRef]
- Cao, P. The strongest size in gradient nanograined metals. Nano Lett. 2020, 20, 1440–1446. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhao, H.; Li, P.; Xiang, H. Effect of Temperature on the Low-Cycle Fatigue Behavior of Polycrystalline TiAl Alloys. Materials 2025, 18, 3147. https://doi.org/10.3390/ma18133147
Zhou J, Zhao H, Li P, Xiang H. Effect of Temperature on the Low-Cycle Fatigue Behavior of Polycrystalline TiAl Alloys. Materials. 2025; 18(13):3147. https://doi.org/10.3390/ma18133147
Chicago/Turabian StyleZhou, Junyan, Haochuan Zhao, Pei Li, and Henggao Xiang. 2025. "Effect of Temperature on the Low-Cycle Fatigue Behavior of Polycrystalline TiAl Alloys" Materials 18, no. 13: 3147. https://doi.org/10.3390/ma18133147
APA StyleZhou, J., Zhao, H., Li, P., & Xiang, H. (2025). Effect of Temperature on the Low-Cycle Fatigue Behavior of Polycrystalline TiAl Alloys. Materials, 18(13), 3147. https://doi.org/10.3390/ma18133147