Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (952)

Search Parameters:
Keywords = fatigue deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5953 KB  
Review
Mechanical Testing Methods for Assessing Hydrogen Embrittlement in Pipeline Steels: A Review
by Luca Paterlini, Giorgio Re, Arianna Curia, Marco Ormellese and Fabio Bolzoni
Metals 2025, 15(10), 1123; https://doi.org/10.3390/met15101123 - 10 Oct 2025
Viewed by 2
Abstract
As the transport of gaseous hydrogen and its use as a low carbon-footprint energy vector become increasingly likely scenarios, both the scientific literature and technical standards addressing the compatibility of pipeline steels with high-pressure hydrogen environments are rapidly expanding. This work presents a [...] Read more.
As the transport of gaseous hydrogen and its use as a low carbon-footprint energy vector become increasingly likely scenarios, both the scientific literature and technical standards addressing the compatibility of pipeline steels with high-pressure hydrogen environments are rapidly expanding. This work presents a detailed review of the most relevant hydrogen embrittlement testing methodologies proposed in standards and the academic literature. The focus is placed on testing approaches that support design-oriented assessments, rather than simple alloy qualification for hydrogen service. Particular attention is given to tensile tests (conducted on smooth and notched specimens), as well as to J-integral and fatigue tests performed following the fracture mechanics’ approach. The influences of hydrogen partial pressure and deformation rate are critically examined, as these parameters are essential for ensuring meaningful comparisons across different studies. Full article
(This article belongs to the Special Issue Recent Insights into Mechanical Properties of Metallic Alloys)
Show Figures

Figure 1

18 pages, 2429 KB  
Article
Research on Fatigue Performance of Fast Melting Styrene-Butadiene-Styrene-Modified Asphalt with High Viscosity and Elasticity
by Hao Zhang, Fei Guo, Xiaoyu Li, Shige Wang and Jinchao Yue
Coatings 2025, 15(10), 1143; https://doi.org/10.3390/coatings15101143 - 2 Oct 2025
Viewed by 215
Abstract
To overcome the limitations of conventional high-viscosity high-elasticity modified asphalt, including high production costs, phase separation, and thermal degradation, this study introduces a novel fast melting Styrene-Butadiene-Styrene modifier (SBS-T) for asphalt modification. The primary novelty of SBS-T lies in its ability to mitigate [...] Read more.
To overcome the limitations of conventional high-viscosity high-elasticity modified asphalt, including high production costs, phase separation, and thermal degradation, this study introduces a novel fast melting Styrene-Butadiene-Styrene modifier (SBS-T) for asphalt modification. The primary novelty of SBS-T lies in its ability to mitigate phase separation and thermal degradation while simplifying the production process, thereby offering a more robust and cost-effective alternative. The viscoelastic properties of SBS-T-modified asphalt were characterized through frequency sweep tests under varying loading conditions, while its fatigue behavior was quantitatively assessed using the Simplified Viscoelastic Continuum Damage (S-VECD) model. The results indicate that the SBS-T-modified asphalt exhibits outstanding viscoelastic performance across a broad range of temperatures and loading frequencies, and can better adapt to the temperature and load changes in complex pavement environments. Among them, the influence of long-term aging on the linear viscoelastic characteristics of SBS-T-modified asphalt is greater than that of ultraviolet aging. The SBS-T-modified asphalt also shows better stiffness and resistance to shear deformation. The fatigue life of asphalt gradually decreases with the deepening of the aging degree, among which the impact of long-term aging on fatigue life is greater than that of ultraviolet aging. Under different aging conditions, SBS-T-modified asphalt has shown good fatigue performance and is suitable for practical engineering applications. Full article
Show Figures

Figure 1

23 pages, 2593 KB  
Article
A Nonlinear Visco-Elasto-Plastic Bingham Fatigue Model of Soft Rock Under Cyclic Loading
by Yonghui Li, Yi Liang, Anyuan Sun and Feng Zhu
Mathematics 2025, 13(19), 3138; https://doi.org/10.3390/math13193138 - 1 Oct 2025
Viewed by 122
Abstract
The fatigue constitutive model under cyclic loading is of vital importance for studying the fatigue deformation characteristics of soft rocks. In this paper, based on the classical Bingham model, a modified Bingham fatigue model for describing the fatigue deformation characteristics of soft rocks [...] Read more.
The fatigue constitutive model under cyclic loading is of vital importance for studying the fatigue deformation characteristics of soft rocks. In this paper, based on the classical Bingham model, a modified Bingham fatigue model for describing the fatigue deformation characteristics of soft rocks under cyclic loading was developed. Firstly, the traditional constant-viscosity component was replaced by an improved nonlinear viscoelastic component related to the number of cycles. The elastic component was replaced by an improved nonlinear elastic component that decays as the number of cycle loads increases. Meanwhile, by decomposing the cyclic dynamic loads into static loads and alternating loads, a one-dimensional nonlinear viscoelastic-plastic Bingham fatigue model was developed. Furthermore, a rock fatigue yield criterion was proposed, and by using an associated flow rule compatible with this criterion, the one-dimensional fatigue model was extended to a three-dimensional constitutive formulation under complex stress conditions. Finally, the applicability of the developed Bingham fatigue model was verified through fitting with experimental data, and the parameters of the model were identified. The model fitting results show high consistency with experimental data, with correlation coefficients exceeding 0.978 and 0.989 under low and high dynamic stress conditions, respectively, and root mean square errors (RMSEs) below 0.028. Comparative analysis between theoretical predictions and existing soft rock fatigue test data demonstrates that the developed Bingham fatigue model more effectively captures the complete fatigue deformation process under cyclic loading, including the deceleration, constant velocity, and acceleration phases. With its simplified component configuration and straightforward combination rules, this model provides a valuable reference for studying fatigue deformation characteristics of rock materials under dynamic loading conditions. Full article
Show Figures

Figure 1

17 pages, 4189 KB  
Article
Effect of Fiber Characteristics on Cracking Resistance Properties of Stone Mastic Asphalt (SMA) Mixture
by Kai Yang, Wenyuan Huang, Mutian Sun, Zhixian Zheng and Hongwei Lin
Polymers 2025, 17(19), 2623; https://doi.org/10.3390/polym17192623 - 28 Sep 2025
Viewed by 276
Abstract
Cracking is a critical distress that reduces an asphalt pavement’s service life, and fiber reinforcement is an effective strategy to enhance anti-cracking capacity. However, the effects of fiber type, morphology, and length on key cracking modes remain insufficiently understood, limiting rational fiber selection [...] Read more.
Cracking is a critical distress that reduces an asphalt pavement’s service life, and fiber reinforcement is an effective strategy to enhance anti-cracking capacity. However, the effects of fiber type, morphology, and length on key cracking modes remain insufficiently understood, limiting rational fiber selection in practice. This study systematically evaluated the influence of four representative fiber types on the anti-cracking performance of Stone Mastic Asphalt (SMA) mixture, combining mechanical testing and microstructural analysis. The fibers included lignin fiber (LF); polyester fiber (PF); chopped basalt fiber (CBF) with lengths of 3 mm, 6 mm, 9 mm; and flocculent basalt fiber (FBF). Key mechanical tests assessed specific cracking behaviors: three-point bending (low-temperature cracking), indirect tensile (tensile cracking), pre-cracked semi-circular bending (crack propagation), overlay (reflective cracking), and four-point bending (fatigue resistance) tests. A scanning electron microscopy (SEM) test characterized fiber morphology and fiber–asphalt interface interactions, revealing microstructural mechanisms underlying performance improvements. The results showed that all fibers improved anti-cracking performance, but their efficacy varied with fiber type, appearance, and length. PF exhibited the best low-temperature cracking resistance, with a 26.8% increase in bending strength and a 16.6% increase in maximum bending strain. For tensile and crack propagation resistance, 6 mm CBF and FBF outperformed the other fibers, with fracture energy increases of up to 53.2% (6 mm CBF) and CTindex improvements of 72.8% (FBF). FBF optimized reflective cracking resistance, increasing the loading cycles by 48.0%, while 6 mm CBF achieved the most significant fatigue life improvement (36.9%) by balancing rigidity and deformation. Additionally, SEM analysis confirmed that effective fiber dispersion and strong fiber–asphalt bonding were critical for enhancing stress transfer and inhibiting crack initiation/propagation. These findings provide quantitative insights into the relationship between fiber characteristics (type, morphology, length) and anti-cracking performance, offering practical guidance for rational fiber selection to improve pavement durability. Full article
(This article belongs to the Special Issue Polymer Materials for Pavement Applications)
Show Figures

Graphical abstract

15 pages, 981 KB  
Article
Integrating Finite Element Data with Neural Networks for Fatigue Prediction in Titanium Dental Implants: A Proof-of-Concept Study
by Tomás Gandía-Sastre and María Prados-Privado
Appl. Sci. 2025, 15(19), 10362; https://doi.org/10.3390/app151910362 - 24 Sep 2025
Viewed by 297
Abstract
Background: Titanium dental implants are widely used, but their long-term mechanical reliability under fatigue loading remains a key concern. Traditional finite element analysis is accurate but computationally intensive. This study explores the integration of finite element analysis data with neural networks to predict [...] Read more.
Background: Titanium dental implants are widely used, but their long-term mechanical reliability under fatigue loading remains a key concern. Traditional finite element analysis is accurate but computationally intensive. This study explores the integration of finite element analysis data with neural networks to predict fatigue-related responses efficiently. Methods: A dataset of 200 finite element analysis simulations was generated, varying load intensity, load angle, and implant size. Each simulation provided three outputs: maximum von Mises stress, maximum displacement, and fatigue safety factor. A feedforward neural network with two hidden layers (64 neurons each, ReLU activation) was trained using 160 simulations, with 40 reserved for testing. Results: The neural network achieved high accuracy across all outputs, with R2 values of 0.97 for stress, 0.95 for deformation, and 0.92 for the fatigue safety factor. Mean errors across the test set were below 5%, indicating strong predictive performance under diverse conditions. Conclusions: The findings demonstrate that neural networks can reliably replicate finite element analysis outcomes with significantly reduced computational time. This approach offers a promising tool for accelerating implant assessment and supports the growing role of AI in biomechanical design and analysis. Full article
(This article belongs to the Special Issue Deep Learning Applied in Dentistry: Challenges and Prospects)
Show Figures

Figure 1

28 pages, 2183 KB  
Review
Salidroside: A Potential Drug Candidate to Treat Rheumatoid Arthritis
by Jiaying Guo, Shan Jiang, Mei Liu, Min Wang, Beibei Han, Ning Zhang, Yumei Liao, Yinhong Xiang, Jianxin Liu and Huifeng Sun
Molecules 2025, 30(19), 3865; https://doi.org/10.3390/molecules30193865 - 24 Sep 2025
Viewed by 596
Abstract
Rheumatoid arthritis (RA) is a widespread autoimmune disease that significantly impacts the lives of RA patients. It is often typified as swelling and deformation of small joints, as well as systemic inflammation. Rhodiola rosea has been utilized for millennia to treat various ailments [...] Read more.
Rheumatoid arthritis (RA) is a widespread autoimmune disease that significantly impacts the lives of RA patients. It is often typified as swelling and deformation of small joints, as well as systemic inflammation. Rhodiola rosea has been utilized for millennia to treat various ailments and is known to contain numerous active compounds, including saponins, volatile oils, coumarins, and flavonoids. Recent studies have underscored the pivotal role of salidroside (SAL), a key constituent of Rhodiola rosea L. Modern research indicates that SAL has various pharmacological activities, such as its antioxidant, anti-inflammatory, anti-fatigue, and anti-cancer effects. Despite this, the pathogenesis of RA remains highly complex, and a notable lack exists in overview studies investigating the anti-RA mechanisms of SAL. Therefore, the purpose of this article is to review the present research efforts on the anti-RA mechanisms of SAL and to explore future research prospects for this compound. Full article
Show Figures

Figure 1

19 pages, 5120 KB  
Article
Paving Integrated Photovoltaic Technology: Numerical Investigation of Fatigue Performance and Design Strategy
by Peichen Cai, Yutong Chai, Susan Tighe, Meng Wang and Shunde Yin
Inventions 2025, 10(5), 83; https://doi.org/10.3390/inventions10050083 - 24 Sep 2025
Viewed by 270
Abstract
To elucidate the fatigue damage evolution of solar road panels under long-term loading and enhance their structural durability, this study develops a particle-based discrete element model and simulates fatigue responses under different structural configurations and loading rates. A strength degradation index was established [...] Read more.
To elucidate the fatigue damage evolution of solar road panels under long-term loading and enhance their structural durability, this study develops a particle-based discrete element model and simulates fatigue responses under different structural configurations and loading rates. A strength degradation index was established by introducing peak stress and terminal stress, enabling quantitative evaluation of strength deterioration. Combined with fracture evolution, the dominant mesoscopic damage mechanisms were revealed. The results indicate that structural configuration strongly influences fatigue performance, with square panels showing the best resistance due to geometric symmetry and stable boundary constraints. Loading rate regulates damage evolution: lower rates promote structural coordination but may delay cumulative failure, while higher rates suppress overall deformation yet increase localized fracture risk. Based on these findings, a nonlinear predictive model of the strength degradation rate was constructed (R2 = 0.935), offering reliable support for structural life prediction and design optimization. Finally, fatigue-resistant design strategies are proposed, including optimal structural configuration, controlled loading rates, bonding enhancement, and integration of online monitoring—providing both theoretical and technical guidance for high-performance, long-lifespan solar road systems. Full article
Show Figures

Figure 1

13 pages, 3069 KB  
Article
The Metadynamic Recrystallization Role in Ultrafast <111> Fiber Texture Evolution During Short-Term Holding in β-Forged Ti-6242
by Haodong Rao, Dong Liu, Jianguo Wang, Yaqi Lai and Yu Zhang
Materials 2025, 18(19), 4447; https://doi.org/10.3390/ma18194447 - 23 Sep 2025
Viewed by 352
Abstract
The Ti-6242 titanium alloy samples were forged at 1020 °C (slightly above the β-transus) and subjected to ultra-short isothermal holding (0–320 s) prior to quenching to investigate the rapid microstructural evolution in the parent β phase. Electron backscatter diffraction (EBSD) with parent β-phase [...] Read more.
The Ti-6242 titanium alloy samples were forged at 1020 °C (slightly above the β-transus) and subjected to ultra-short isothermal holding (0–320 s) prior to quenching to investigate the rapid microstructural evolution in the parent β phase. Electron backscatter diffraction (EBSD) with parent β-phase reconstruction reveals that within only 1–3 s of holding, a pronounced <111> fiber texture develops along the forging axis, superseding the original <100> deformation fiber. This ultrafast texture change is attributed to metadynamic recrystallization (MDRX)—the post-deformation growth of nuclei formed during dynamic deformation. The newly formed <111>-oriented β grains still contain residual substructure, indicating incomplete strain release consistent with MDRX. Longer holds (tens of seconds) lead to more extensive static recrystallization and normal grain growth, which dilute the strong <111> fiber as grains of other orientations form and coarsen. These findings demonstrate that even a brief pause after forging can markedly alter the prior β texture via a MDRX mechanism. This insight highlights a novel approach to microtexture control in Ti-6242: by leveraging MDRX during short holds, one can potentially disrupt the formation of aligned α colony microtextured regions (MTRs, or “macrozones”) upon subsequent cooling, thereby mitigating dwell-fatigue susceptibility. The study revises the interpretation of the recrystallization mechanism in short-term holds and provides guidance for optimizing β-phase processing to improve fatigue performance. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 6771 KB  
Article
A Comparative Analysis of the Fatigue Strength of Aluminium and Copper Wires Used for Power Cables
by Tadeusz Knych, Beata Smyrak and Bartosz Jurkiewicz
Materials 2025, 18(18), 4426; https://doi.org/10.3390/ma18184426 - 22 Sep 2025
Viewed by 478
Abstract
Recent studies have demonstrated that the utilisation of aluminium in electrical applications has increased substantially, particularly in the context of power cables. The substitution of copper with aluminium in cable fabrication is predominantly driven by economic considerations. When designing such cables, it is [...] Read more.
Recent studies have demonstrated that the utilisation of aluminium in electrical applications has increased substantially, particularly in the context of power cables. The substitution of copper with aluminium in cable fabrication is predominantly driven by economic considerations. When designing such cables, it is imperative to ascertain their functional properties, including their electrical conductivity and mechanical properties, and their operational properties, which include rheological, thermal, and material fatigue resistance. This is to ensure that the aluminium and copper cables are compatible. The primary challenge confronting researchers in this domain pertains to predicting and forecasting the failure of overhead cables during their operational lifecycle. One of the most significant and prevalent operational hazards is fatigue damage. This article presents the experimental results of fatigue tests on single Al and Cu wires in various states of mechanical reinforcement. The parameters of the Wöhler curve were determined, and a comparative analysis of the morphology of fatigue damage in single copper and aluminium wires was performed. It was found that copper wires are more fatigue-resistant than aluminium wires. In the case of high-cycle fatigue, this difference can amount to 106 cycles. An analysis of fatigue fracture morphology showed that fractures have a developed surface and that plastic deformation makes a significant contribution in the case of low-cycle fatigue. In the case of high-cycle fatigue, many cracks were observed in the copper wires. No such cracks were observed in the aluminium wires. Full article
Show Figures

Figure 1

8 pages, 978 KB  
Article
Integrative Innovation in Genioplasty: Advanced 3D Plate Design: Promoting Stability, Aesthetics, and Harmony Excellence
by Bruno Nifossi Prado, Lucas Cavalieri Pereira, Bianca Pulino and Raphael Capelli Guerra
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 42; https://doi.org/10.3390/cmtr18030042 - 22 Sep 2025
Viewed by 327
Abstract
Background: Genioplasty is a well-established surgical technique for reshaping the chin and enhancing facial harmony. However, conventional fixation methods may present biomechanical and aesthetic limitations. Objective: This study introduces and evaluates a novel Anatomical Chin Plate (ACP), designed to enhance mechanical performance and [...] Read more.
Background: Genioplasty is a well-established surgical technique for reshaping the chin and enhancing facial harmony. However, conventional fixation methods may present biomechanical and aesthetic limitations. Objective: This study introduces and evaluates a novel Anatomical Chin Plate (ACP), designed to enhance mechanical performance and facial aesthetics compared to the conventional chin plate (CP). Methods: A three-dimensional finite element analysis (FEA) was conducted to compare stress distribution in ACP and CP models under a standardized oblique load of 60 N, simulating muscle forces from the mentalis and digastric muscles. Plates were modeled using Blender and analyzed using ANSYS software 2025 r2. Mechanical behavior was assessed based on von Mises stress, concentration sites, and potential for plastic deformation or fatigue failure. Results: The ACP demonstrated a significantly lower maximum von Mises stress (77.19 MPa) compared to the CP (398.48 MPa). Stress distribution in the ACP was homogeneous, particularly around the lateral fixation holes, while the CP exhibited concentrated stress between central screw holes. These findings indicate that the anatomical geometry of the ACP enhances load dispersion, reduces critical stress concentrations, and minimizes fatigue risk. Conclusions: The ACP design offers superior biomechanical behavior and improved aesthetic potential for genioplasty procedures. Its optimized shape allows for better integration with facial anatomy while providing stable fixation. Further studies are recommended to validate in vitro performance and explore clinical applicability in advanced genioplasty and complex osteotomies. Full article
(This article belongs to the Special Issue Innovation in Oral- and Cranio-Maxillofacial Reconstruction)
Show Figures

Figure 1

20 pages, 9930 KB  
Article
Effect of Microbial Activity on the Rheological Behavior of Asphalt Under Thin-Film Inoculation
by Tao Shen, Shaopeng Zheng, Xiang Liu, Xiaolong Li, Jingpeng Jia and Zhibo Wang
Coatings 2025, 15(9), 1101; https://doi.org/10.3390/coatings15091101 - 19 Sep 2025
Viewed by 382
Abstract
Microorganisms present in asphalt pavement service environments can alter the composition of asphalt through metabolic activities, thereby affecting its rheological properties. To investigate this influence and compare performance variations across asphalt types, two asphalt-degrading bacterial strains were isolated from in-service pavements. Following 16S [...] Read more.
Microorganisms present in asphalt pavement service environments can alter the composition of asphalt through metabolic activities, thereby affecting its rheological properties. To investigate this influence and compare performance variations across asphalt types, two asphalt-degrading bacterial strains were isolated from in-service pavements. Following 16S rRNA gene sequencing and phylogenetic analysis, the strains were identified as Pseudomonas putida and a putative novel species within the Citrobacter genus. Using a custom-designed thin-film inoculation system, the performance evolution of base asphalt and styrene-butadiene-styrene (SBS) modified asphalt was systematically evaluated after microbial activity periods of 5, 10, and 15 days. Conventional property tests and multi-temperature rheological analyses (temperature sweep, multiple stress creep recovery test, linear amplitude sweep, 4 mm DSR) were conducted. Results demonstrated that microbial action reduced penetration, elevated softening point, and decreased ductility in both asphalt types, with more pronounced changes observed in base asphalt. High-temperature rheological parameters (G*/sinδ), recovery rate, and non-recoverable creep compliance indicated compromised resistance to permanent deformation. SBS-modified asphalt substantially mitigated these detrimental effects. Fatigue life of base asphalt decreased overall with periodic fluctuations, whereas SBS-modified asphalt exhibited superior fatigue stability: after an initial decline at 5 days, performance recovered and stabilized between 10 and 15 days. Low-temperature performance showed slight improvement in base asphalt, while SBS-modified asphalt demonstrated significant enhancement during later activity stages. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

15 pages, 4066 KB  
Article
Thermo-Mechanical Fatigue in AISI 347 Austenitic Stainless Steel: Phase Transformation Kinetics at Elevated Temperatures
by Viktor Lyamkin, Sascha Power, Christian Boller and Peter Starke
Appl. Sci. 2025, 15(18), 10095; https://doi.org/10.3390/app151810095 - 16 Sep 2025
Viewed by 311
Abstract
Thermo-mechanical fatigue remains one of the more difficult phenomena to analyze due to the interplay between temperature, mechanical properties, and microstructural features of the material. For austenitic stainless steel, thermo-mechanical fatigue plays a particularly critical role—temperature changes the affinity of γ austenite to [...] Read more.
Thermo-mechanical fatigue remains one of the more difficult phenomena to analyze due to the interplay between temperature, mechanical properties, and microstructural features of the material. For austenitic stainless steel, thermo-mechanical fatigue plays a particularly critical role—temperature changes the affinity of γ austenite to transform into α martensite under overcritical deformation. This paper presents the results of an in situ study of γα deformation-induced transformation kinetics at elevated temperatures in AISI 347. Fatigue tests were conducted in the temperature range of 20 to 320 °C. A uniaxial magnetic balance was used to directly measure the change in ferromagnetic volume fraction of the fatigue specimens as the fatigue load was applied. From this data, an empirical mathematical model was found. This model describes the kinetics of γα transformation as an exponential function of temperature, where the rate of phase transformation decreases with temperature, asymptotically approaching zero but never actually reaching it. Full article
(This article belongs to the Special Issue Advances and Applications in Mechanical Fatigue and Life Assessment)
Show Figures

Figure 1

23 pages, 51566 KB  
Article
Experimental Investigations of Dynamic Response and Fatigue Damage Characteristics of Granite Under Multi-Level Cyclic Impacts
by Jiaming Yang, Diyuan Li, Zida Liu, Peng Xiao and Quanqi Zhu
Appl. Sci. 2025, 15(18), 9995; https://doi.org/10.3390/app15189995 - 12 Sep 2025
Viewed by 341
Abstract
Dynamic fatigue of rocks under repeated cyclic impact is a nonconservative property, as surrounding rocks in real environments subjects them to variable impact disturbances, and the degree of damage varies under different energy level loads. To evaluate the dynamic response and fatigue damage [...] Read more.
Dynamic fatigue of rocks under repeated cyclic impact is a nonconservative property, as surrounding rocks in real environments subjects them to variable impact disturbances, and the degree of damage varies under different energy level loads. To evaluate the dynamic response and fatigue damage characteristics of rocks under multi-level cyclic impacts, uniaxial cyclic impact tests were carried out on granite with various stress paths and energy levels using a modified split Hopkinson pressure bar. Dynamic deformation characteristics of specimens under different loading modes were investigated by introducing the deformation modulus of the loading stage. Evolution of macroscopic cracks during the impact process was investigated based on high-speed camera images, and the microscopic structure of damaged specimens was examined using SEM. In addition, cumulative energy dissipation was used to assess the damage of rocks. Results show that the deformation modulus of the loading stage, dynamic peak stress and strain of specimens increase with the impact energy, and the deformation modulus of the loading stage decreases as the damage level increases. Propagation rate of tensile cracks in rock was correlated with participation time of the higher energy level, which observed the following sequence: linearly decreasing > same > linearly increasing energy level, and cyclic loading of nonlinear energy level produced more tensile cracks and rock spalling than the same energy level. Compared with cyclic impacts of the same energy level, multi-level impacts form more microcracks and fatigue striations. The cumulative rate of specimen damage under the same energy change rate is as follows: linear decreasing > same > linear increasing loading. This provides a new case study for evaluating the dynamic damage, crushing efficiency and load-bearing capacity of rocks in real engineering environments. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

29 pages, 5135 KB  
Article
Constitutive Modeling of Creep–Fatigue Interaction in 1Cr-1Mo-0.25V Steel for Hold-Time Testing
by Federico Bucciarelli, Alessandro Guazzini, Tommaso Grossi, Giuseppe Macoretta and Bernardo Disma Monelli
Metals 2025, 15(9), 1014; https://doi.org/10.3390/met15091014 - 12 Sep 2025
Viewed by 459
Abstract
In the field of energy production, creep–fatigue interaction is a typical failure mode that might compromise the structural integrity of both rotating equipment and pressure vessels. Common design practices approach the problem in a conservative way by using high safety factors, which typically [...] Read more.
In the field of energy production, creep–fatigue interaction is a typical failure mode that might compromise the structural integrity of both rotating equipment and pressure vessels. Common design practices approach the problem in a conservative way by using high safety factors, which typically results in additional costs for manufacturing companies. The aim of this article, in the framework of continuum damage mechanics approaches, is to present a novel fatigue damage-based constitutive law. The presented law is directly inspired by well-assessed creep-based rules, suggesting a similarity in the behavior. On the other hand, creep deformation and damage are calculated with a more recent approach. The identification of the model parameters was carried out by interpreting experimental results obtained from low-cycle fatigue and creep relaxation tests performed on a commonly used ferritic–martensitic steel for power generation rotor forgings. To validate the proposed models, they were used to estimate material life consumption when the material was subjected to fully reversed axial loading conditions with hold time under tensile load. Different loading conditions at different total strain ranges and hold times were simulated, and good agreement was found between the predicted and experimental life, thus confirming the validity of the proposed models. Full article
(This article belongs to the Special Issue Numerical Modelling of Mechanical Properties for Metallic Materials)
Show Figures

Figure 1

19 pages, 3662 KB  
Article
Influence of Pre-Strain and Notching on the Fatigue Life of DD11 Low-Carbon Steel
by Ivan Tomasi, Luigi Solazzi, Candida Petrogalli, Alberto Mazzoni and Giorgio Donzella
Appl. Sci. 2025, 15(18), 9886; https://doi.org/10.3390/app15189886 - 9 Sep 2025
Viewed by 381
Abstract
Structural applications commonly adopt low-carbon steels, with the fatigue concept being one of the primary causes of failure. In this research, the aim was to study the fatigue behaviour of DD11 low-carbon steel, considering also specific conditions, like the effect of pre-deformation and [...] Read more.
Structural applications commonly adopt low-carbon steels, with the fatigue concept being one of the primary causes of failure. In this research, the aim was to study the fatigue behaviour of DD11 low-carbon steel, considering also specific conditions, like the effect of pre-deformation and influence of stress intensity factor. After determining the geometry and performing static tests to extrapolate the mechanical properties of the material, the fatigue behaviour of the base material was analysed, following the actual standards. Then, two conditions, a pre-strain equal to 11% and a notch, simulated with a hole and without pre-deformation, were studied. The results showed an absence of influence on the fatigue limit for the material with a pre-strain effect, and regarding the notching tests conducted, there was a low sensitivity to fatigue of the material. Full article
(This article belongs to the Special Issue Fatigue Damage Behavior and Mechanisms: Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop