Prediction of the Low-Velocity Collision Response Characterization of a Plate Structure Considering the Strain Hardening Effect
Abstract
1. Introduction
2. Effect of Strain Hardening on the CCD
2.1. Collision Characterization Diagram (CCD)
2.2. Finite Element Simulations
2.3. Finite Element Analysis
3. Modified Collision Characterization Diagram (MCCD)
3.1. Analytical Expression of New Contact Stiffness
3.2. Construction of MCCD
3.3. Validations of MCCD
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Xiao, X.; Jia, B.; Wang, Y.; Li, J. The Effect of Incorporating Lüders Plateau into a Plasticity Model in Predicting the Ballistic Impact Responses of 40CrNiMoA Steel Projectiles and Plates. Materials 2025, 18, 1364. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, W. Impact: The Theory and Physical Behavior of Colliding Solids; Edward Arnold Publishers: London, UK, 1960. [Google Scholar]
- Stronge, W.J. Impact Mechanics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Zhang, X.; Sun, S.; Kang, X.; Huang, Z.; Li, Y. Dynamic Response and Energy Absorption of Lattice Sandwich Composite Structures Under Underwater Explosive Load. Materials 2025, 18, 1317. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Zhou, Y.; Song, G.; Hao, W. Impact Damage Localization in Composite Structures Using Data-Driven Machine Learning Methods. Materials 2025, 18, 449. [Google Scholar] [CrossRef]
- Ying, W.; Zhao, J.; Zhou, H.; Zhu, Y.; Yang, Y.; Hu, X. Analysis of the Damage and Failure Mechanism of Q345 Steel Plate with Initial Defect Under Different Temperature Conditions by Peridynamics. Materials 2025, 18, 1886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yin, X.; Yang, J.; Wang, H.; Deng, Q.; Yu, B.; Hao, Q.; Ding, H.; Qi, X.; Jin, T.; et al. Transient impact response analysis of an elastic-plastic beam. Appl. Math. Model. 2018, 55, 616–636. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, X.; Yu, B.; Hao, Q.; Xiao, X.; Jiang, L.; Wang, H.; Chen, C.; Xie, W.; Ding, H.; et al. Experimental analysis of dynamic behavior of elastic visco-plastic beam under repeated mass impacts. Int. J. Impact Eng. 2023, 171, 104371. [Google Scholar] [CrossRef]
- Lee, G.; Yang, J.; Kim, S.; Lee, S. Low-Velocity Impact Analysis in Composite Plates Incorporating Experimental Interlaminar Fracture Toughness. Materials 2024, 17, 5768. [Google Scholar] [CrossRef]
- Liu, B.; Villavicencio, R.; Soares, C.G. Experimental and Numericai Piastic Response and Failure of Laterally Impacted Rectangular Plates. J. Offshore Mech. Arct. Eng. 2013, 135, 041602. [Google Scholar] [CrossRef]
- Wang, H.; Yin, X.; Deng, Q.; Yu, B.; Hao, Q.; Dong, X. Experimental and theoretical analyses of elastic-plastic repeated impacts by considering wave effects. Eur. J. Mech. A-Solids 2017, 65, 212–222. [Google Scholar] [CrossRef]
- Abrate, S. Modeling of impacts on composite structures. Compos. Struct. 2001, 51, 129–138. [Google Scholar] [CrossRef]
- Abrate, S. Impact on laminated composites: Recent advances. Appl. Mech. Rev. 1994, 47, 517–544. [Google Scholar] [CrossRef]
- Yigit, A.S.; Christoforou, A.P. Limits of asymptotic solutions in low-velocity impact of composite plates. Compos. Struct. 2007, 81, 568–574. [Google Scholar] [CrossRef]
- Christoforou, A.P.; Yigit, A.S. Effect of flexibility on low velocity impact response. J. Sound Vib. 1998, 217, 563–578. [Google Scholar] [CrossRef]
- Christoforou, A.P.; Yigit, A.S. Characterization of impact in composite plates. Compos. Struct. 1998, 43, 15–24. [Google Scholar] [CrossRef]
- Olsson, R. Closed form prediction of peak load and delamination onset under small mass impact. Compos. Struct. 2003, 59, 341–349. [Google Scholar] [CrossRef]
- Olsson, R. Mass criterion for wave controlled impact response of composite plates. Compos. Part A Appl. Sci. Manuf. 2000, 31, 879–887. [Google Scholar] [CrossRef]
- Swanson, S.R. Limits of quasi-static solutions in impact of composite structures. Compos. Eng. 1992, 2, 261–267. [Google Scholar] [CrossRef]
- Christoforou, A.P.; Yigit, A.S.; Majeed, M.A. Low-velocity impact response of structures with local plastic deformation: Characterization and scaling. J. Comput. Nonlinear Dyn. 2013, 8, 011012. [Google Scholar] [CrossRef]
- Olsson, R. Impact response of orthotropic composite plates predicted from a one-parameter differential equation. AIAA J. 1992, 30, 1587–1596. [Google Scholar] [CrossRef]
- Andrew, J.J.; Srinivasan, S.M.; Arockiarajan, A.; Dhakal, H.N. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review. Compos. Struct. 2019, 224, 111007. [Google Scholar] [CrossRef]
- Habibi, M.; Abbassi, F.; Laperriere, L. Quasi-static indentation and acoustic emission to analyze failure and damage of bio-composites subjected to low-velocity impact. Compos. Part A Appl. Sci. Manuf. 2022, 158, 106976. [Google Scholar] [CrossRef]
- Zhao, H.; Li, C.; Fu, Y.; Oyarhossein, M.A.; Habibi, M.; Safarpour, H. Quasi-static indentation, low-velocity impact, and resonance responses of the laminated double-curved panel considering various boundary conditions. Thin-Walled Struct. 2023, 183, 110360. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Z.; Ringsberg, J.W.; Wang, J. An elastic-plastic ice material model for ship-iceberg collision simulations. Ocean Eng. 2015, 102, 27–39. [Google Scholar] [CrossRef]
- Nishikawa, M.; Hemmi, K.; Park, S.C.; Nadabe, T.; Takeda, N. Finite element analysis on the Impact-induced damage of composite fan blades subjected to a bird strike. Trans. Jpn. Soc. Aeronaut. Space Sci. 2011, 54, 238–245. [Google Scholar] [CrossRef]
- Dhaliwal, G.S.; Newaz, G.M. Experimental and numerical investigation of impact characteristics of the E-Glass/Toughened Vinylester composite car hood panels. J. Dyn. Behav. Mater. 2016, 2, 484–499. [Google Scholar] [CrossRef]
- Sun, F.; Sun, Q.; Ni, L.; Liang, K. Numerical analysis of anti-bird strike performance in structural connection design for a vertical tail leading edge. Thin-Walled Struct. 2019, 144, 106319. [Google Scholar] [CrossRef]
- Park, H. A study on impact damage analysis of composite propeller blade of turboprop aircraft. Key Eng. Mater. 2014, 577, 489–492. [Google Scholar] [CrossRef]
- Christoforou, A.P.; Yigit, A.S.; Cantwell, W.J.; Yang, F. Impact response characterization in composite plates—Experimental validation. Appl. Compos. Mater. 2010, 17, 463–472. [Google Scholar] [CrossRef]
- Kriflou, T.; Rachik, M.; Azrar, L.; Bikri, K.E. Numerical Simulation of the Effects of Strain Hardening Exponent with and without Strain Rate Sensitivity of Material on Normal Elastic Plastic Impact. J. Phys. Conf. Ser. 2021, 1888, 012015. [Google Scholar] [CrossRef]
- Liu, B.; Soares, C.G. Effect of strain rate on dynamic responses of laterally impacted steel plates. Int. J. Mech. Sci. 2019, 160, 307–317. [Google Scholar] [CrossRef]
- Zhu, L.; He, X.; Chen, F.L.; Bai, X. Effects of the Strain Rate Sensitivity and Strain Hardening on the Saturated Impulse of Plates. Lat. Am. J. Solids Struct. 2017, 14, 1273–1292. [Google Scholar] [CrossRef]
- Pan, B.; Shen, F.; Sampathkumar, S.R.; Münstermann, S. Modeling Strain Hardening of Metallic Materials with Sigmoidal Function Considering Temperature and Strain Rate Effects. Materials 2024, 17, 3950. [Google Scholar] [CrossRef] [PubMed]
- Gardner, L.; Wang, F.; Liew, A. Influence Of Strain Hardening On The Behavior And Design Of Steel Structures. Int. J. Struct. Stab. Dyn. 2011, 11, 855–875. [Google Scholar] [CrossRef]
- Xiao, X.; Yin, X.; Wang, H.; Ding, H.; Yu, B.; Guo, Y.; Xie, W. Characterization of low-velocity and low-energy responses of elastic-plastic plate struck by elastic-plastic impactor. Thin-Walled Struct. 2024, 197, 111537. [Google Scholar] [CrossRef]
- Xiao, X.; Yin, X.; Wang, H.; Ding, H.; Yu, B.; Guo, Y.; Xie, W. Study on characterization of moderate energy impact response of elastic-plastic plate structure. Mech. Adv. Mater. Struct. 2024, 1–15. [Google Scholar] [CrossRef]
Plate (Q345) | |||
---|---|---|---|
0.3 | |||
0.1, 0.2, 0.3, 0.4, 0.5 | |||
Sphere (GCr15) | |||
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
0.05 | 0.2 | 0.5 | 1.0 | 3.0 | 10 | 20 | 50 | |
640 | 640 | 640 | 640 | 640 | 640 | 640 | 640 | |
24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | |
0.01 | 0.03 | 0.04 | 0.06 | 0.11 | 0.19 | 0.27 | 0.43 | |
No. | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
200 | 500 | 20 | 30 | 60 | 150 | 300 | 500 | |
640 | 640 | 123 | 123 | 123 | 123 | 123 | 123 | |
24 | 24 | 8 | 8 | 8 | 8 | 8 | 8 | |
0.87 | 1.37 | 2.47 | 3.02 | 4.27 | 6.75 | 9.55 | 12.33 |
Plate | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
(GPa) | 110 | 100 | 70 | 200 | 210 | 120 |
(MPa) | 1000 | 600 | 300 | 700 | 620 | 320 |
0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | |
121 | 183 | 256 | 314 | 372 | 412 | |
0.1–0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | |
Plate | 7 | 8 | 9 | 10 | 11 | 12 |
(GPa) | 100 | 70 | 120 | 200 | 170 | 200 |
(MPa) | 220 | 150 | 220 | 345 | 260 | 260 |
0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | |
500 | 513 | 599 | 637 | 719 | 845 | |
0.1–0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
380 | 420 | 200 | 250 | 600 | 640 | 200 | 320 | 150 | 160 | 320 | 120 | |
32 | 32 | 32 | 32 | 48 | 48 | 24 | 24 | 12 | 12 | 12 | 8 | |
10 | 10 | 10 | 10 | 15 | 15 | 15 | 15 | 7.5 | 15 | 15 | 10 | |
0.05 | 0.2 | 3.5 | 8 | 5 | 50 | 16 | 10 | 80 | 50 | 100 | 220 | |
70 | 200 | 210 | 120 | 70 | 100 | 120 | 200 | 200 | 200 | 70 | 110 | |
300 | 700 | 620 | 320 | 150 | 220 | 220 | 345 | 345 | 345 | 300 | 620 | |
0.3 | 0.3 | 0.35 | 0.35 | 0.3 | 0.3 | 0.35 | 0.3 | 0.3 | 0.3 | 0.3 | 0.35 | |
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.15 | 0.25 | 0.35 | 0.45 | 0.1 | 0.2 | 0.3 | |
0.1 | 0.5 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | |
Constrain | C | C | S | S | S | S | S | S | C | C | S | S |
0.015 | 0.038 | 0.052 | 0.075 | 0.136 | 0.452 | 0.926 | 1.322 | 2.202 | 2.721 | 4.157 | 5.213 | |
0.658 | 0.586 | 1.578 | 1.215 | 0.643 | 0.498 | 1.123 | 0.511 | 0.522 | 0.131 | 0.109 | 0.291 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
400 | 500 | 600 | 640 | 800 | 800 | 640 | 640 | 480 | 480 | 640 | 600 | |
400 | 500 | 500 | 480 | 720 | 720 | 480 | 480 | 240 | 240 | 480 | 500 | |
25 | 25 | 50 | 50 | 25 | 25 | 12 | 12 | 12 | 12 | 10 | 10 | |
8 | 16 | 8 | 8 | 8 | 16 | 8 | 16 | 10 | 32 | 16 | 8 | |
0.05 | 0.2 | 0.3 | 0.6 | 20 | 160 | 100 | 200 | 125 | 180 | 200 | 250 | |
70 | 200 | 210 | 120 | 70 | 100 | 120 | 200 | 200 | 200 | 70 | 110 | |
300 | 700 | 620 | 320 | 150 | 220 | 220 | 345 | 345 | 345 | 300 | 620 | |
0.3 | 0.3 | 0.35 | 0.35 | 0.3 | 0.3 | 0.35 | 0.3 | 0.3 | 0.3 | 0.3 | 0.35 | |
0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.15 | 0.25 | 0.35 | |
0.1 | 0.5 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | |
Constrain | C | C | C | S | S | S | C | C | C | C | S | S |
0.016 | 0.026 | 0.041 | 0.059 | 0.155 | 0.476 | 0.812 | 1.321 | 2.411 | 3.111 | 4.278 | 6.123 | |
4.513 | 8.469 | 3.889 | 11.39 | 0.612 | 0.886 | 0.398 | 0.166 | 0.556 | 0.613 | 0.101 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Yin, X.; Ding, H. Prediction of the Low-Velocity Collision Response Characterization of a Plate Structure Considering the Strain Hardening Effect. Materials 2025, 18, 3040. https://doi.org/10.3390/ma18133040
Xiao X, Yin X, Ding H. Prediction of the Low-Velocity Collision Response Characterization of a Plate Structure Considering the Strain Hardening Effect. Materials. 2025; 18(13):3040. https://doi.org/10.3390/ma18133040
Chicago/Turabian StyleXiao, Xin, Xiaochun Yin, and Huaiping Ding. 2025. "Prediction of the Low-Velocity Collision Response Characterization of a Plate Structure Considering the Strain Hardening Effect" Materials 18, no. 13: 3040. https://doi.org/10.3390/ma18133040
APA StyleXiao, X., Yin, X., & Ding, H. (2025). Prediction of the Low-Velocity Collision Response Characterization of a Plate Structure Considering the Strain Hardening Effect. Materials, 18(13), 3040. https://doi.org/10.3390/ma18133040