Ultrasonic-Assisted K+ Modification of Industrial Hemp Stalk Hydrothermal Biochar for Highly Effective Adsorption of Pb2+
Abstract
:1. Introduction
2. Experimental
2.1. Material
2.2. Prepared Material
2.3. Characterization
2.4. Sorption Experiment
3. Results and Discussion
3.1. Physicochemical Properties of KOH-Modified Industrial Hemp Stalk Core Hydrothermal Biochar
3.2. Adsorption Ability and Performance of Ultrasonic-Assisted K+-Modified Hydrothermal Biochar in Industrial Hemp Stalk Core
3.2.1. Result of Batch Adsorbent Experiment
3.2.2. Result of Further Adsorbent Experiments
3.2.3. Effect of Coexisting Ions
3.3. Sorption Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Zhang, Z.Y.; Yuan, T.; Shimizu, K.Z.Y.; Wang, D.; Luo, D.J.; Wang, D.X.; Ru, J.J. Direct electroseparation of zinc from zinc sulfide in eco-friendly deep eutectic solvent: Highlighting the role of malonic acid. Sep. Purif. Technol. 2023, 306, 122686. [Google Scholar] [CrossRef]
- Mason, L.H.; Jordan, P.H.; Dong, Y.H. Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Res. Int. 2014, 2014, 840547. [Google Scholar] [CrossRef] [PubMed]
- Cinperi, N.C.; Ozturk, E.; Yigit, N.O.; Kitis, M. Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. J. Clean. Prod. 2019, 223, 837–848. [Google Scholar] [CrossRef]
- Sarode, S.; Upadhyay, P.; Khosa, M.A.; Mak, T.; Shakir, A.; Song, S.; Ullah, A. Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. Int. J. Biol. Macromol. 2019, 121, 1086–1100. [Google Scholar] [CrossRef]
- Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S.K. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J. Water Process Eng. 2019, 33, 101038. [Google Scholar] [CrossRef]
- Guimarães, T.G.S.; Barros, A.L.; Silva, R.S.; Gonzalez, M.H.; Carrilho, E.N.V.M.; Labuto, G. Synthesis and characterization of biochars modified with natural deep eutectic solvent (NADES) for dipyrone removal from aqueous medium. Sustain. Chem. Pharm. 2023, 35, 101205. [Google Scholar] [CrossRef]
- Zeng, Q.; Huang, Y.J.; Huang, L.M.; Hu, L.; Sun, W.; Zhong, H.; He, Z.H. High adsorption capacity and super selectivity for Pb (II) by a novel adsorbent: Nano humboldtine/almandine composite prepared from natural almandine. Chemosphere 2020, 253, 126650. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, N.; Li, X.; Wang, Y.Z.; Xiong, Y.K.; Meng, R.R.; Liu, L.; He, S.F. Single-step hydrothermal synthesis of biochar from waste industrial hemp stalk core for Pb2+ sorption: Characterization and mechanism studies. Sustain. Chem. Pharm. 2023, 36, 101316. [Google Scholar] [CrossRef]
- Cao, Y.; Shen, G.; Zhang, Y.; Gao, C.F.; Li, Y.F.; Zhang, P.Z.; Xiao, W.H.; Han, L.J. Impacts of carbonization temperature on the Pb (II) adsorption by wheat straw-derived biochar and related mechanism. Sci. Total Environ. 2019, 692, 479–489. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, H.; Feng, Q.; Yao, D.; Chen, H.; Wang, H.; Zhou, Z.; Li, H.; Tian, Y.; Lu, X. Effect of phosphoric acid on the surface properties and Pb (II) adsorption mechanisms of hydrochars prepared from fresh banana peels. J. Clean. Prod. 2017, 165, 221–230. [Google Scholar] [CrossRef]
- Jiang, H.; Deng, F.; Luo, Y.; Xie, Z.; Chen, Y.; Zhou, P.; Liu, X.; Li, D. Hydrothermal carbonization of corn straw in biogas slurry. J. Clean. Prod. 2022, 353, 131682. [Google Scholar] [CrossRef]
- Herath, A.; Layne, C.A.; Perez, F.; Hassan, E.B.; Pittman, C.U.; Mlsna, T.E. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr (VI), Pb (II) and Cd (II). Chemosphere 2021, 269, 128409. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, X.; Ge, Z.; Bao, Z.; Lin, L.; Chen, Y.; Dai, W.; Sun, Y.; Yuan, H.; Yang, W.; et al. KOH-activated biochar and chitosan composites for efficient adsorption of industrial dye pollutants. Chem. Eng. J. 2024, 486, 150387. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X.; Liu, Y.; Lin, X.; Wang, J.; Zhang, Z.; Li, N.; Li, Y.; Zhang, Y. KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers. Waste Manag. 2021, 130, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Shen, Y.; Zhang, Z.; Ge, X.; Chen, M. Activated bio-chars derived from rice husk via one-and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 2019, 646, 1567–1577. [Google Scholar] [CrossRef]
- Noureen, S.; Rehman, S.U.; Batool, S.M.; Ali, J.; Zhang, Q.; Batool, S.S.; Wan, Y.; Li, C. Tailoring Bi2Se3 Topological Insulator for Visible-NIR Photodetectors with Schottky Contacts Using Liquid Phase Exfoliation. ACS Appl. Mater. Interfaces 2024, 16, 8158–8168. [Google Scholar] [CrossRef]
- Jiang, S.; Yan, L.; Wang, R.; Li, G.; Rao, P.; Ju, M.; Jian, L.; Guo, X.; Che, L. Recyclable nitrogen-doped biochar via low-temperature pyrolysis for enhanced lead (II) removal. Chemosphere 2022, 286, 131666. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Chen, C.; Zhang, X.; Zhou, K.; Long, X. Banana stem and leaf biochar as an effective adsorbent for cadmium and lead in aqueous solution. Sci. Rep. 2022, 12, 1584. [Google Scholar] [CrossRef]
- Sun, T.; Pei, P.; Sun, Y.; Xu, Y.; Jia, H. Performance and mechanism of As (III/V) removal from aqueous solution by novel positively charged animal-derived biochar. Sep. Purif. Technol. 2022, 290, 120836. [Google Scholar] [CrossRef]
- Bashir, S.; Zhu, J.; Fu, Q.; Hu, H. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Environ. Sci. Pollut. Res. 2018, 25, 11875–11883. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafez, A.A.; Li, J. Removal of Pb (II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. J. Taiwan Inst. Chem. Eng. 2016, 61, 367–375. [Google Scholar] [CrossRef]
- Sun, L.; Wu, I.; Wang, J.; Xu, M.; Zhou, W.; Du, Y.; Li, Y.; Li, H. Fabricating hydroxyapatite functionalized biochar composite using steel slag and Hami melon peel for Pb (II) and Cd (II) removal. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131310. [Google Scholar] [CrossRef]
- Teng, D.; Zhang, B.; Xu, G.; Wang, B.; Mao, K.; Wang, J.; Sun, J.; Feng, X.; Yang, Z.; Zhang, H. Efficient removal of Cd (II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms. Environ. Pollut. 2020, 265, 115001. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, F.; Li, H.; Li, Y.; Liu, Y.; Chen, Y.; Li, M.; Li, L.; Jiang, H.; Chen, L. Simple hydrothermal synthesis of magnetic MnFe2O4-sludge biochar composites for removal of aqueous Pb2+. J. Anal. Appl. Pyrolysis 2021, 156, 105173. [Google Scholar] [CrossRef]
- Deng, S.; Ren, B.; Hou, B.; Deng, X.; Deng, X.; Zhu, G.; Cheng, S. Adsorption of Sb (III) and Pb (II) in wastewater by magnetic γ-Fe2O3-loaded sludge biochar: Performance and mechanisms. Chemosphere 2024, 349, 140914. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.-S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J. Hazard. Mater. 2009, 167, 933–939. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, Z.; Mo, H.; Chen, Y.; Hu, X. Microwave-assisted catalytic hydrothermal carbonization of Laminaria japonica for hydrochars catalyzed and activated by potassium compounds. Bioresour. Technol. 2021, 341, 125835. [Google Scholar] [CrossRef]
- Jung, K.-W.; Lee, S.Y.; Lee, Y.J. Facile one-pot hydrothermal synthesis of cubic spinel-type manganese ferrite/biochar composites for environmental remediation of heavy metals from aqueous solutions. Bioresour. Technol. 2018, 261, 1–9. [Google Scholar] [CrossRef]
- Guo, S.; Gao, Y.; Wang, Y.; Liu, Z.; Wei, X.; Peng, P.; Xiao, B.; Yang, Y. Urea/ZnCl2 in situ hydrothermal carbonization of Camellia sinensis waste to prepare N-doped biochar for heavy metal removal. Environ. Sci. Pollut. Res. 2019, 26, 30365–30373. [Google Scholar] [CrossRef]
- Soria, R.I.; Rolfe, S.A.; Betancourth, M.P.; Thornton, S.F. The relationship between properties of plant-based biochars and sorption of Cd (II), Pb (II) and Zn (II) in soil model systems. Heliyon 2020, 6, e05388. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zhao, S.; Guo, H.; Xing, B.; Liu, Y.; Zhang, C.; Ma, M. High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed. Bioresour. Technol. 2022, 343, 126081. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Cheng, S.; Yue, L.; You, Z.; Cai, J. N-doped biochar from chitosan gel-like solution: Effect of hydrothermal temperature and superior aqueous Cr (VI) removal performance. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128426. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, T.C.; Ouyang, L.; Yuan, S. Single-step hydrothermal synthesis of biochar from H3PO4-activated lettuce waste for efficient adsorption of Cd (II) in aqueous solution. Molecules 2022, 27, 269. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Zhao, Y.; Liu, Y.; Pan, J. Preparation of copper-based biochar adsorbent with outstanding H2S adsorption capacity and study on H2S removal. J. Energy Inst. 2022, 105, 481–490. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Zhang, Y.; Pan, W. The distribution of Pb (II)/Cd (II) adsorption mechanisms on biochars from aqueous solution: Considering the increased oxygen functional groups by HCl treatment. Bioresour. Technol. 2019, 291, 121859. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, L.; Wang, J. Cerium alginate cross-linking with biochar beads for fast fluoride removal over a wide pH range. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128161. [Google Scholar] [CrossRef]
- Nautiyal, P.; Subramanian, K.A.; Dastidar, M.G. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry. J. Environ. Manag. 2016, 182, 187–197. [Google Scholar] [CrossRef]
Sample | Elemental Content (%) | O/C | Specific Surface Area (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) | pHpzc | |||
---|---|---|---|---|---|---|---|---|---|
C | O | H | N | ||||||
IHSC | 46.58 | 45.10 | 1.77 | 1.17 | 0.968 | ---- | ---- | ---- | ---- |
HBS50 | 56.53 | 34.30 | 2.54 | 0.25 | 0.607 | 359.11 | 0.357 | 8.95 | 3.35 |
HBS50-K0.25M | 52.98 | 37.59 | 2.52 | 0.28 | 0.710 | 30.71 | 0.122 | 19.15 | 4.61 |
HBS50-K0.5M | 51.48 | 38.66 | 2.64 | 0.21 | 0.751 | 21.33 | 0.099 | 18.81 | 4.49 |
HBS50-K1M | 57.18 | 33.20 | 2.69 | 0.31 | 0.581 | 17.61 | 0.082 | 18.65 | 4.33 |
Sorption kinetics | Pseudo-first-order Model | Pseudo-second-order Model | ||||
k1 (min−1) | qe (mg/g) | R2 | k2 (min−1) | qe (mg/g) | R2 | |
0.102 | 284.5 | 0.867 | 7.073 | 344.7 | 0.988 | |
Sorption isotherm | Langmuir isotherm | Freundlich isotherm | ||||
kl (min−1) | qm (mg/g) | R2 | kf (min−1) | n | R2 | |
3.123 | 353.3 | 0.963 | 146.66 | 0.155 | 0.891 |
Hydrothermal Biochars | Preparation Yield (%) | pH | Qm (mg/g) | Ref. |
---|---|---|---|---|
Rice husk hydrothermal biochars | ---- | 5.0 | 1.84 | [17] |
MnFe2O4-activated sludge hydrothermal biochar | ---- | Natural pH | 174.2 | [25] |
H3PO4-activated banana peel hydrothermal biochar | 28.9 | Natural pH | 356.2 | [10] |
K2CO3-activated Laminaria japonica hydrothermal biochar | 16.6 | Natural pH | 108.0 | [28] |
MnFe2O4-activated Undaria pinnatifida roots hydrothermal biochar | ---- | 5.0 | 175.4 | [29] |
Urea/ZnCl2-activated Camellia sinensis waste hydrothermal biochar | 43.7 | Natural pH | 73.1 | [30] |
H2SO4-activated industrial hemp stalk core-driven hydrothermal biochar | 49.2 | 5.0 | 195.9 | [8] |
KOH-modified industrial hemp straw core hydrothermal biochar | 39.0 | 5.0 | 345.8 | This work |
Solutions | Alkali Metal Elemental Content (mg/L) | |||
---|---|---|---|---|
Na | Mg | K | Ca | |
Before | 0.389 | 0.478 | 0 | 0.620 |
After | 0.421 | 0.422 | 20.90 | 0.700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Yu, W.; Zhang, Z.; Li, Q.; Peng, C.; Wu, K.; Liu, D.; He, S.; Liu, N.; Li, X. Ultrasonic-Assisted K+ Modification of Industrial Hemp Stalk Hydrothermal Biochar for Highly Effective Adsorption of Pb2+. Materials 2025, 18, 2348. https://doi.org/10.3390/ma18102348
Liu L, Yu W, Zhang Z, Li Q, Peng C, Wu K, Liu D, He S, Liu N, Li X. Ultrasonic-Assisted K+ Modification of Industrial Hemp Stalk Hydrothermal Biochar for Highly Effective Adsorption of Pb2+. Materials. 2025; 18(10):2348. https://doi.org/10.3390/ma18102348
Chicago/Turabian StyleLiu, Le, Wanjin Yu, Zheren Zhang, Qiyao Li, Chun Peng, Kaisheng Wu, Duoduo Liu, Sufang He, Nengsheng Liu, and Xiang Li. 2025. "Ultrasonic-Assisted K+ Modification of Industrial Hemp Stalk Hydrothermal Biochar for Highly Effective Adsorption of Pb2+" Materials 18, no. 10: 2348. https://doi.org/10.3390/ma18102348
APA StyleLiu, L., Yu, W., Zhang, Z., Li, Q., Peng, C., Wu, K., Liu, D., He, S., Liu, N., & Li, X. (2025). Ultrasonic-Assisted K+ Modification of Industrial Hemp Stalk Hydrothermal Biochar for Highly Effective Adsorption of Pb2+. Materials, 18(10), 2348. https://doi.org/10.3390/ma18102348