Optical, Mechanical, and Chemical Impact of Brushing with Activated Charcoal Toothpowder and Toothpaste on Dental Enamel: An In Vitro Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size Calculation
2.3. Sample Preparation
2.4. Dental Staining
2.5. Enamel Color, Microhardness, and Surface Roughness
2.6. Experimental Groups
2.7. Brushing Protocol
2.8. Scanning Electron Microscopy (SEM) Characterization: Morphology of Charcoal Powder Particles and Enamel Surface
2.9. Chemical Solution Evaluation: pH and Fluoride/Calcium Ion Release
2.10. Verification of Ionic Release: Fluoride and Calcium
2.11. Statistical Analysis
3. Results
3.1. Surface Microhardness and Roughness of Enamel
3.2. Color Stability Evaluation
3.3. Chemical Evaluation of Slurries: pH Measurements
3.4. Chemical Evaluation of Slurries: Soluble Fluoride and Calcium Ions
3.5. SEM Results of Charcoal Powder Particles and Enamel Surface Morphology
4. Discussion
5. Conclusions
- (1)
- Brushing with CA-based toothpowder/toothpaste or whitening toothpaste did not induce any significant color change in the dental substrate.
- (2)
- The enamel surface brushed with CA-based toothpowder/toothpaste showed an increase in Ra and a decrease in HK, highlighting the potential risks associated with indiscriminate prolonged use of these materials.
- (3)
- The topographical morphology of the enamel showed less significant changes specifically when brushed with conventional dentifrices, because the action of the soft bristles of these dentifrices, combined with low force intensity, only acted on the hygienization of the tooth surface.
- (4)
- The solutions resulting from brushing with the investigated toothpowders and toothpastes are alkaline. A deficiency of soluble fluoride and a higher release of calcium were observed after brushing with the activated charcoal toothpowder.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Tadakamadla, J.; Johnson, N.W. Effect of Toothbrushing Frequency on Incidence and Increment of Dental Caries: A Systematic Review and Meta-Analysis. J. Dent. Res. 2016, 95, 1230–1236. [Google Scholar] [CrossRef]
- Thomas, J.G.; Nakaishi, L.A. Managing the Complexity of a Dynamic Biofilm. J. Am. Dent. Assoc. 2006, 137, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L. Rebalancing the Caries Microbiome Dysbiosis: Targeted Treatment and Sugar Alcohols. Adv. Dent. Res. 2018, 29, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Cury, J.A.; Tenuta, L.M.A. Evidence-Based Recommendation on Toothpaste Use. Braz. Oral Res. 2014, 28, 1–7. [Google Scholar] [CrossRef]
- Epple, M.; Meyer, F.; Enax, J. A Critical Review of Modern Concepts for Teeth Whitening. Dent. J. 2019, 7, 79. [Google Scholar] [CrossRef]
- Hara, A.T.; Turssi, C.P. Baking Soda as an Abrasive in Toothpastes: Mechanism of Action and Safety and Effectiveness Considerations. J. Am. Dent. Assoc. 2017, 148, S27–S33. [Google Scholar] [CrossRef]
- Enax, J.; Meyer, F.; Schulze zur Wiesche, E.; Fuhrmann, I.C.; Fabritius, H.O. Toothpaste Abrasion and Abrasive Particle Content: Correlating High-Resolution Profilometric Analysis with Relative Dentin Abrasivity (RDA). Dent. J. 2023, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Carey, C.M. Tooth Whitening: What We Now Know. J. Evid. Based Dent. Pract. 2014, 14, 70. [Google Scholar] [CrossRef]
- da Silva, D.F.; Figueiredo, F.C.; Scaramucci, T.; Mailart, M.C.; Torres, C.R.G.; Borges, A.B. Is the Whitening Effect of Charcoal-Based Dentifrices Related to Their Abrasive Potential or the Ability of Charcoal to Adsorb Dyes? J. Dent. 2024, 140, 104794. [Google Scholar] [CrossRef]
- Tomás, D.B.M.; Pecci-Lloret, M.P.; Guerrero-Gironés, J. Effectiveness and Abrasiveness of Activated Charcoal as a Whitening Agent: A Systematic Review of in Vitro Studies. Ann. Anat. 2023, 245, 151998. [Google Scholar] [CrossRef]
- Hagemann, N.; Spokas, K.; Schmidt, H.P.; Kägi, R.; Böhler, M.A.; Bucheli, T.D. Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon’s ABCs. Water 2018, 10, 182. [Google Scholar] [CrossRef]
- Brooks, J.K.; Bashirelahi, N.; Reynolds, M.A. Charcoal and Charcoal-Based Dentifrices: A Literature Review. J. Am. Dent. Assoc. 2017, 148, 661–670. [Google Scholar] [CrossRef]
- Wang, G.; Qiu, G.; Wei, J.; Guo, Z.; Wang, W.; Liu, X.; Song, Y. Activated Carbon Enhanced Traditional Activated Sludge Process for Chemical Explosion Accident Wastewater Treatment. Environ. Res. 2023, 225, 115595. [Google Scholar] [CrossRef]
- Emídio, A.G.; e Silva, V.F.F.M.; Ribeiro, E.P.; Zanin, G.T.; Lopes, M.B.; Guiraldo, R.D.; Berger, S.B. In Vitro Assessment of Activated Charcoal-Based Dental Products. J. Esthet. Restor. Dent. 2023, 35, 423–430. [Google Scholar] [CrossRef]
- Viana, Í.E.L.; Weiss, G.S.; Sakae, L.O.; Niemeyer, S.H.; Borges, A.B.; Scaramucci, T. Activated Charcoal Toothpastes Do Not Increase Erosive Tooth Wear. J. Dent. 2021, 109, 103677. [Google Scholar] [CrossRef] [PubMed]
- Zoller, M.J.; Hamza, B.; Cucuzza, C.; Gubler, A.; Attin, T.; Wegehaupt, F.J. Relative Dentin and Enamel Abrasivity of Charcoal Toothpastes. Int. J. Dent. Hyg. 2023, 21, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Maciel, J.L.B.; Geng Vivanco, R.; Pires-de-Souza, F.C.P. Remineralization, Color Stability and Surface Roughness of Tooth Enamel Brushed with Activated Charcoal-Based Products. J. Esthet. Restor. Dent. 2023, 35, 1144–1151. [Google Scholar] [CrossRef]
- Vaz, V.T.P.; Jubilato, D.P.; de Oliveira, M.R.M.; Bortolatto, J.F.; Floros, M.C.; Dantas, A.A.R.; Oliveira Junior, O.B. Whitening Toothpaste Containing Activated Charcoal, Blue Covarine, Hydrogen Peroxide or Microbeads: Which One Is the Most Effective? J. Appl. Oral Sci. 2019, 27, e20180051. [Google Scholar] [CrossRef] [PubMed]
- Batista, G.R.; Barcellos, D.C.; Torres, C.R.G.; Goto, E.H.; Pucci, C.R.; Borges, A.B. The Influence of Chemical Activation on Tooth Bleaching Using 10% Carbamide Peroxide. Oper. Dent. 2011, 36, 162–168. [Google Scholar] [CrossRef]
- Meireles, S.S.; Fontes, S.T.; Coimbra, L.A.A.; Della Bona, Á.; Demarco, F.F. Effectiveness of Different Carbamide Peroxide Concentrations Used for Tooth Bleaching: An in Vitro Study. J. Appl. Oral Sci. 2012, 20, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, R.T.; Catelan, A.; dos Santos Bertoldo, E.; Venâncio, P.C.; Groppo, F.C.; Ambrosano, G.M.B.; Marchi, G.M.; Lima, D.A.N.L.; Aguiar, F.H.B. Effect of 7.5% Hydrogen Peroxide Containing Remineralizing Agents on Hardness, Color Change, Roughness and Micromorphology of Human Enamel. Am. J. Dent. 2015, 28, 261–267. [Google Scholar] [PubMed]
- Sulieman, M.; Addy, M.; Rees, J.S. Development and Evaluation of a Method in Vitro to Study the Effectiveness of Tooth Bleaching. J. Dent. 2003, 31, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.C.; Uehara, J.L.S.; Meroni, B.M.; Zuttion, G.S.; Cenci, M.S. The Effect of a Charcoal-Based Powder for Enamel Dental Bleaching. Oper. Dent. 2020, 45, 618–623. [Google Scholar] [CrossRef]
- Carlos, N.R.; Pinto, A.V.D.; Amaral, F.L.B.; França, F.M.G.; Turssi, C.P.; Basting, R.T. Influence of Staining Solutions on Color Change and Enamel Surface Properties During At-Home and In-Office Dental Bleaching: An In Situ Study. Oper. Dent. 2019, 44, 595–608. [Google Scholar] [CrossRef]
- De Geus, J.L.; Lara, M.B.; Hanzen, T.A.; Fernández, E.; Loguercio, A.D.; Kossatz, S.; Reis, A. One-Year Follow-up of at-Home Bleaching in Smokers before and after Dental Prophylaxis. J. Dent. 2015, 43, 1346–1351. [Google Scholar] [CrossRef]
- Koc Vural, U.; Bagdatli, Z.; Yilmaz, A.E.; Yalçın Çakır, F.; Altundaşar, E.; Gurgan, S. Effects of Charcoal-Based Whitening Toothpastes on Human Enamel in Terms of Color, Surface Roughness, and Microhardness: An in Vitro Study. Clin. Oral Investig. 2021, 25, 5977–5985. [Google Scholar] [CrossRef]
- Palandi, S.S.; Kury, M.; Picolo, M.Z.D.; Coelho, C.S.S.; Cavalli, V. Effects of Activated Charcoal Powder Combined with Toothpastes on Enamel Color Change and Surface Properties. J. Esthet. Restor. Dent. 2020, 32, 783–790. [Google Scholar] [CrossRef]
- de Oliveira Roma, F.R.V.; Oliveira, T.J.L.; Bauer, J.; Firoozmand, L.M. Resin-Modified Glass Ionomer Enriched with BIOGLASS: Ion-Release, Bioactivity and Antibacterial Effect. J. Biomed. Mater. Res. B Appl. Biomater. 2023, 111, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, T.; Silva, P.B.; Basso, G.R.; Franco, M.C.; Maske, T.T.; Cenci, M.S. Factors Affecting the Color Stability and Staining of Esthetic Restorations. Odontology 2019, 107, 507–512. [Google Scholar] [CrossRef]
- Cury, J.A.; Oliveira, M.J.L.; Martins, C.C.; Tenuta, L.M.A.; Paiva, S.M. Available Fluoride in Toothpastes Used by Brazilian Children. Braz. Dent. J. 2010, 21, 396–400. [Google Scholar] [CrossRef]
- Ricomini Filho, A.P.; Tenuta, L.M.A.; Fernandes, F.S.F.; Calvo, A.F.B.; Kusano, S.C.; Cury, J.A. Fluoride Concentration in the Top-Selling Brazilian Toothpastes Purchased at Different Regions. Braz. Dent. J. 2012, 23, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.Y.; Buzalaf, M.A.R.; Manarelli, M.M.; Delbem, A.C.B.; Pessan, J.P. Effects of PH and Fluoride Concentration of Dentifrices on Fluoride Levels in Saliva, Biofilm, and Biofilm Fluid in Vivo. Clin. Oral Investig. 2016, 20, 983–989. [Google Scholar] [CrossRef]
- Nagata, M.E.; Delbem, A.C.B.; Hall, K.B.; Buzalaf, M.A.R.; Pessan, J.P. Fluoride and Calcium Concentrations in the Biofilm Fluid after Use of Fluoridated Dentifrices Supplemented with Polyphosphate Salts. Clin. Oral Investig. 2017, 21, 831–837. [Google Scholar] [CrossRef]
- Sujiono, E.H.; Zabrian, D.; Zurnansyah; Mulyati; Zharvan, V.; Samnur; Humairah, N.A. Fabrication and Characterization of Coconut Shell Activated Carbon Using Variation Chemical Activation for Wastewater Treatment Application. Results Chem. 2022, 4, 100291. [Google Scholar] [CrossRef]
- Yan, Q.; Li, J.; Cai, Z. Preparation and Characterization of Chars and Activated Carbons from Wood Wastes. Carbon Lett. 2021, 31, 941–956. [Google Scholar] [CrossRef]
- Carneiro, B.T.; Kury, M.; Lopes, J.C.; Gonçalves, R.S.; Suzuki, T.Y.U.; dal Picolo, M.Z.; Giannini, M.; André, C.B. Effect of Whitening Toothpastes and Activated Charcoal Powder on Enamel Wear and Surface Roughness. Braz. Oral Res. 2023, 37, e092. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Sharma, S.; Logani, A.; Shah, N.; Singh, S. Comparative Evaluation of Tooth Substance Loss and Its Correlation with the Abrasivity and Chemical Composition of Different Dentifrices. Indian J. Dent. Res. 2016, 27, 630–636. [Google Scholar] [CrossRef]
- Nassar, H.M.; Hara, A.T. Effect of Dentifrice Slurry Abrasivity and Erosive Challenge on Simulated Non-Carious Cervical Lesions Development in Vitro. J. Oral Sci. 2021, 63, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Pertiwi, U.I.; Eriwati, Y.K.; Irawan, B. Surface Changes of Enamel after Brushing with Charcoal Toothpaste. J. Phys. Conf. Ser. 2017, 884, 012002. [Google Scholar] [CrossRef]
- Santos, G.C.; Baia, J.C.P.; Ribeiro, M.E.S.; Silva, T.N.B.; e Souza Junior, M.H.S.; Loretto, S.C. Does the Whitening Dentifrice Containing Activated Charcoal Interfere with the Properties of Dental Enamel? Microhardness, Surface Roughness and Colorimetry Analyzes. J. Clin. Exp. Dent. 2024, 16, e243. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, N.; Honda, K.; Iino, F.; Arai, T. Changes in Enamel Surface Roughness and Adhesion of Streptococcus Mutans to Enamel after Vital Bleaching. J. Dent. 2003, 31, 543–548. [Google Scholar] [CrossRef]
- Ubaldini, A.L.M.; Baesso, M.L.; Medina Neto, A.; Sato, F.; Bento, A.C.; Pascotto, R.C. Hydrogen Peroxide Diffusion Dynamics in Dental Tissues. J. Dent. Res. 2013, 92, 661–665. [Google Scholar] [CrossRef]
- Müller-Heupt, L.K.; Wiesmann-Imilowski, N.; Kaya, S.; Schumann, S.; Steiger, M.; Bjelopavlovic, M.; Deschner, J.; Al-Nawas, B.; Lehmann, K.M. Effectiveness and Safety of Over-the-Counter Tooth-Whitening Agents Compared to Hydrogen Peroxide In Vitro. Int. J. Mol. Sci. 2023, 24, 1956. [Google Scholar] [CrossRef] [PubMed]
- Torso, V.H.; Fraga, M.A.A.; Lopes, R.M.; Aranha, A.C.C.; Correr-Sobrinho, L.; Correr, A.B. Charcoal-Based Dentifrices: Effect on Color Stability and Surface Wear of Resin Composites. J. Esthet. Restor. Dent. 2021, 33, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, G.; Tellefsen, G.; Johannsen, A.; Liljeborg, A. The Importance of Measuring Toothpaste Abrasivity in Both a Quantitative and Qualitative Way. Acta Odontol. Scand. 2013, 71, 508. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Junior, W.F.; Vieira, I.; Ambrosano, G.M.B.; Aguiar, F.H.B.; Lima, D.A.N.L. Correlation between Alteration of Enamel Roughness and Tooth Color. J. Clin. Exp. Dent. 2018, 10, e815. [Google Scholar] [CrossRef] [PubMed]
- Gavic, L.; Gorseta, K.; Borzabadi-Farahani, A.; Tadin, A.; Glavina, D. Influence of Toothpaste PH on Its Capacity to Prevent Enamel Demineralization. Contemp. Clin. Dent. 2018, 9, 554. [Google Scholar] [CrossRef] [PubMed]
- Cury, J.A.; Tenuta, L.M.A. Enamel Remineralization: Controlling the Caries Disease or Treating Early Caries Lesions? Braz. Oral Res. 2009, 23, 23–30. [Google Scholar] [CrossRef]
Groups (n = 12) | Whitening Agent | General Composition (Amount of Fluorine Provided by the Manufacturer) |
---|---|---|
AC-T | Activated charcoal-Toothpaste | Aqua, Glycerin, Hydrated Silica, Sodium Lauryl Sulfate, Aroma [Contains Mentha Piperita (Peppermint Oil)], Cellulose Gum, Xanthan Gum, Sodium Fluoride, Sodium Saccharin, Charcoal Powder, Benzyl Alcohol, Eugenol. Contains: Sodium Fluoride (1450 ppm F−) |
AC-P | Activated charcoal-Powder | Coconut shell activated charcoal, Kaolin clay, Orange essential oil. No contains fluoride. |
HP-T | Hydrogen Peroxide-Toothpaste | Propylene glycol, calcium pyrophosphate, glycerin, PEG/PPH/116 copolymer 66, PEG-12, PVP-hydrogen peroxide, PVP, silica, aroma, tetrasodium pyrophosphate, sodium lauryl sulfate, disodium pyrophosphate, sodium monofluorphosphate, saccharin sodium, sucralose, BHT, eugenol. Contains: Hydrogen peroxide 1%, sodium monofluorphosphate 0.76% (1000 ppm F−) |
C-T | Control-Toothpaste | Calcium Carbonate, Aqua, Glycerin, Sodium Lauryl Sulfate, Sodium Monoflurophosphate, Cellulose Gum, Aroma, Tetrasodium Pyrophosphate, Sodium Bicarbonate, Benzyl Alcohol, Sodium Saccharin, Sodium Hydroxide. Contains: Sodium Monoflurophosphate (1450 ppm F−) |
Groups | Microhardness (HK) | Roughness (Ra) | ||||
---|---|---|---|---|---|---|
Before Brushing (T0) | After Brushing (T1) | p Value | Before Brushing (T0) | After Brushing (T1) | p Value | |
AC-T | 231.69 (6.18) a | 193.66 (8.62) b | 0.001 | 0.111 (0.034) a | 0.202 (0.097) Bb | 0.011 |
AC-P | 222.52 (2.08) a | 186.77 (8.87) b | 0.005 | 0.113 (0.036) a | 0.196 (0.090) Bb | 0.012 |
HP-T | 227.33 (6.57) a | 230.91(6.14) a | 0.410 | 0.119 (0.034) a | 0.225 (0.116) Ab | 0.002 |
C-T | 232.97 (6.19) a | 222.30 (5.67) a | 0.092 | 0.100 (0.032) a | 0.177 (0.073) Cb | 0.006 |
p value | 0.069 | 0.001 | 0.183 | <0.001 |
Experimental Groups | Mean ΔE (SD) | p |
---|---|---|
AC-T | 4.55 (1.72) | 0.676 |
AC-P | 4.14 (2.7.2) | |
HP-T | 5.79 (1.63) | |
C-T | 5.97 (2.12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cutrim, E.A.C.; Penha, K.J.d.S.; Silva, P.B.d.; Carvalho, E.M.; Silva, M.G.; Kugelmeier, C.L.; Firoozmand, L.M. Optical, Mechanical, and Chemical Impact of Brushing with Activated Charcoal Toothpowder and Toothpaste on Dental Enamel: An In Vitro Evaluation. Materials 2024, 17, 6104. https://doi.org/10.3390/ma17246104
Cutrim EAC, Penha KJdS, Silva PBd, Carvalho EM, Silva MG, Kugelmeier CL, Firoozmand LM. Optical, Mechanical, and Chemical Impact of Brushing with Activated Charcoal Toothpowder and Toothpaste on Dental Enamel: An In Vitro Evaluation. Materials. 2024; 17(24):6104. https://doi.org/10.3390/ma17246104
Chicago/Turabian StyleCutrim, Eva Aline Costa, Karla Janilee de Souza Penha, Patrícia Barbosa da Silva, Edilausson Moreno Carvalho, Mayron Guedes Silva, Cristie Luis Kugelmeier, and Leily Macedo Firoozmand. 2024. "Optical, Mechanical, and Chemical Impact of Brushing with Activated Charcoal Toothpowder and Toothpaste on Dental Enamel: An In Vitro Evaluation" Materials 17, no. 24: 6104. https://doi.org/10.3390/ma17246104
APA StyleCutrim, E. A. C., Penha, K. J. d. S., Silva, P. B. d., Carvalho, E. M., Silva, M. G., Kugelmeier, C. L., & Firoozmand, L. M. (2024). Optical, Mechanical, and Chemical Impact of Brushing with Activated Charcoal Toothpowder and Toothpaste on Dental Enamel: An In Vitro Evaluation. Materials, 17(24), 6104. https://doi.org/10.3390/ma17246104