Effect of Cold Deformation and Heat Treatment on the Microstructures and Mechanical Properties of Au-15Ag-12Cu-6Ni Alloy Sheets
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Impact of Cold Rolling Reductions on the Microstructure and Properties of the Au-15Ag-12Cu-6Ni Alloy
3.2. The Impact of Stress Relief Annealing Temperature on the Mcrostructure and Properties of Alloys
3.3. Heat Treatment Process Optimization
3.3.1. Annealing at Low Temperatures
3.3.2. Double Heat Treatment
3.4. Phase Analysis
4. Conclusions
- The maximum cold deformation limit of the alloy is 66% and the grains initially underwent deformation and were subsequently crushed into finer grains with the increase in cold rolling reduction. Significant work hardening occurred during the cold rolling process and the hardness reached its peak of 315 (Hv0.5) at a cold rolling reduction of 66%.
- With the increase in annealing temperature the alloy’s recrystallization ratio gradually rose, reaching complete recrystallization at 700 °C. Correspondingly, the alloy exhibited the most pronounced softening effect with the lowest hardness at 700 °C.
- The cold deformation texture of the alloy was mainly oriented along <111>//RD and has a deviation of 60° from the RD towards the TD. As the deformation increased, the texture strength gradually increased. After annealing, the alloy retained the texture type obtained during cold deformation, but there was a certain degree of deviation in the texture angles.
- After a 300 °C heat treatment for half an hour, a substantial amount of ordered phases AuCu precipitated in the finished sheet, leading to significant strengthening of the alloy with a hardness of 380 (Hv0.5).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conte, A., Jr.; Agarwala, V. An investigation of gold alloy slip ring capsule wear failures. Wear 1989, 133, 355–371. [Google Scholar] [CrossRef]
- Li, J.; Acoff, V.L.; Li, Z.; Liu, Y. Tripling hardness of gold by micro alloying coupled with cold processing. J. Alloys Compd. 2016, 661, 466–470. [Google Scholar] [CrossRef]
- Kim, H.-I.; Kim, T.-W.; Kim, Y.-O.; Cho, S.-Y.; Lee, G.-Y.; Kwon, Y.H.; Seol, H.-J. Age-hardenability and related microstructural changes during and after phase transformation in an Au-Ag-Cu-based dental alloy. Mater. Res. 2013, 16, 71–87. [Google Scholar] [CrossRef]
- Yu, C.-H.; Park, M.-G.; Kwon, Y.H.; Seol, H.-J.; Kim, H.-I. Age-hardening behaviour and related phase transformation of a commercial type III dental casting gold alloy. J. Korean Soc. Dent. Mater. 2007, 34, 217–223. [Google Scholar]
- Fu, L.; Ge, H.; Zhang, B.; Zhou, X.; Ma, L.; Zhu, L.; Lu, S.; Yuan, B.; He, J.; Mao, Y. The effects of discontinuous precipitation and ordering on the age-hardening in Au-20Ag-30Cu (wt.%) alloy. J. Alloys Compd. 2023, 930, 167375. [Google Scholar] [CrossRef]
- Kim, H.; Jang, M.; Jeon, B. Age-hardening associated with precipitation reaction and spinodal decomposition in a commercial dental low-carat Au–Ag–Cu–Pd alloy. J. Mater. Sci. Mater. Med. 1997, 8, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.-T. Influence of Gd addition on the structure and properties of Au-Ni and Au−Ni−Cr alloys. Gold Bull. 2006, 39, 220–225. [Google Scholar] [CrossRef]
- Xiang, X.-Z.; Bai, X.-J.; Huang, Y.-Q.; Li, M.-Q. The status of investigation about small alloying additions for jewellery. Foundry 2006, 55, 668–672. [Google Scholar] [CrossRef]
- Seol, H.-J.; Kim, G.-C.; Son, K.-H.; Kwon, Y.H.; Kim, H.-I. Hardening mechanism of an Ag–Pd–Cu–Au dental casting alloy. J. Alloys Compd. 2005, 387, 139–146. [Google Scholar] [CrossRef]
- Ohta, M.; Shiraishi, T.; Yamane, M.; Yasuda, K. Age-hardening mechanism of equiatomic AuCu and AuCu-Ag pseudo-binary alloys. Dent. Mater. J. 1983, 2, 10–17, 154. [Google Scholar] [CrossRef] [PubMed]
- Hisatsune, K.; Tanaka, Y.; Udoh, K.; Yasuda, K. Three stages of ordering in CuAu. Intermetallics 1995, 3, 335–339. [Google Scholar] [CrossRef]
- Shiraishi, T.; Fujii, K.; Ohta, M.; Nakagawa, M. Ordering behaviors and age-hardening in Cu0.5Au0.5−xNix alloys. Mater. Charact. 1993, 30, 137–145. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, Q.; Zhou, X.; Qin, G.; Mao, Y. Minor Ni addition improving mechanical property of Au–20Ag–10Cu alloy. Vacuum 2023, 214, 112174. [Google Scholar] [CrossRef]
- Udoh, K.-I.; Fujiyama, H.; Hisatsune, K.; Hasaka, M.; Yasuda, K. Age-hardening associated with ordering and spinodal decomposition in a AgCu-40 at% Au pseudobinary alloy. J. Mater. Sci. 1992, 27, 504–510. [Google Scholar] [CrossRef]
- Pan, L.G.; Wang, J. Age-hardening behavior of a low-gold dental alloy. J. Mater. Sci. Mater. Med. 2007, 18, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-G.; Yu, C.-H.; Seol, H.-J.; Kwon, Y.H.; Kim, H.-I. Age-hardening behaviour of a spinodally decomposed low-carat gold alloy. J. Mater. Sci. 2008, 43, 1539–1545. [Google Scholar] [CrossRef]
- Shiraishi, T.; Ohta, M.; Nakagawa, M.; Ouchida, R. Effects of small silver addition to AuCu on the AuCu I ordering process and age-hardening behaviours. J. Alloys Compd. 1997, 257, 306–312. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Kong, W.-W.; Yuan, C.; Chen, Y.-P.; Liu, X.; Liu, S. Effects of annealing on microstructures and properties of cold-rolled GH3536 sheet. Mater. Charact. 2021, 180, 111409. [Google Scholar] [CrossRef]
- Sadeghpour, S.; Abbasi, S.; Morakabati, M.; Karjalainen, L.; Porter, D. Effect of cold rolling and subsequent annealing on grain refinement of a beta titanium alloy showing stress-induced martensitic transformation. Mater. Sci. Eng. A 2018, 731, 465–478. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, H.; Chen, R.; Han, E.-H. Study on the evolution pattern of grain orientation and misorientation during the static recrystallization of cold-rolled Mg-Zn-Gd alloy. Mater. Charact. 2019, 150, 252–266. [Google Scholar] [CrossRef]
- Kaushik, L.; Kim, M.-S.; Singh, J.; Kang, J.-H.; Heo, Y.-U.; Suh, J.-Y.; Choi, S.-H. Deformation mechanisms and texture evolution in high entropy alloy during cold rolling. Int. J. Plast. 2021, 141, 102989. [Google Scholar] [CrossRef]
- Huang, X.; Xin, Y.; Cao, Y.; Li, W.; Huang, G.; Zhao, X.; Liu, Q.; Wu, P. Understanding the mechanisms of texture evolution in an Mg-2Zn-1Ca alloy during cold rolling and annealing. Int. J. Plast. 2022, 158, 103412. [Google Scholar] [CrossRef]
- Gupta, A.; Khatirkar, R.; Singh, J. A review of microstructure and texture evolution during plastic deformation and heat treatment of β-Ti alloys. J. Alloys Compd. 2022, 899, 163242. [Google Scholar] [CrossRef]
- Han, L.; Jeurgens, L.P.; Cancellieri, C.; Wang, J.; Xu, Y.; Huang, Y.; Liu, Y.; Wang, Z. Anomalous texture development induced by grain yielding anisotropy in Ni and Ni-Mo alloys. Acta Mater. 2020, 200, 857–868. [Google Scholar] [CrossRef]
- Wang, B.; Chen, X.-H.; Pan, F.-S.; Mao, J.-J.; Fang, Y. Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 2481–2489. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Li, B.; Shi, J.; Liu, Y.; Xiao, P. Effect of cold rolling and aging treatment on the microstructure and properties of Cu–3Ti–2Mg alloy. J. Alloys Compd. 2020, 818, 152915. [Google Scholar] [CrossRef]
- Seol, H.-J.; Shiraishi, T.; Tanaka, Y.; Miura, E.; Hisatsune, K.; Kim, H.-I. Ordering behaviors and age-hardening in experimental AuCu–Zn pseudobinary alloys for dental applications. Biomaterials 2002, 23, 4873–4879. [Google Scholar] [CrossRef]
- Hisatsune, K.; Udoh, K.-I.; Sosrosoedirdjo, B.I.; Tani, T.; Yasuda, K. Age-hardening characteristics in an AuCu-14at.% Ag alloy. J. Alloys Compd. 1991, 176, 269–283. [Google Scholar] [CrossRef]
Position | Au | Ag | Ni | Cu |
---|---|---|---|---|
Upper section | 65.56 | 15.81 | 6.36 | 12.27 |
Upper middle section | 66.99 | 15.09 | 5.89 | 12.03 |
Lower middle section | 66.36 | 15.79 | 5.8 | 12.05 |
Lower section | 67.43 | 14.75 | 5.9 | 11.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Cui, X.; Hui, S.; Li, C.; Ye, W.; Yu, Y. Effect of Cold Deformation and Heat Treatment on the Microstructures and Mechanical Properties of Au-15Ag-12Cu-6Ni Alloy Sheets. Materials 2024, 17, 356. https://doi.org/10.3390/ma17020356
Chen H, Cui X, Hui S, Li C, Ye W, Yu Y. Effect of Cold Deformation and Heat Treatment on the Microstructures and Mechanical Properties of Au-15Ag-12Cu-6Ni Alloy Sheets. Materials. 2024; 17(2):356. https://doi.org/10.3390/ma17020356
Chicago/Turabian StyleChen, Haodong, Xinyue Cui, Songxiao Hui, Changheng Li, Wenjun Ye, and Yang Yu. 2024. "Effect of Cold Deformation and Heat Treatment on the Microstructures and Mechanical Properties of Au-15Ag-12Cu-6Ni Alloy Sheets" Materials 17, no. 2: 356. https://doi.org/10.3390/ma17020356
APA StyleChen, H., Cui, X., Hui, S., Li, C., Ye, W., & Yu, Y. (2024). Effect of Cold Deformation and Heat Treatment on the Microstructures and Mechanical Properties of Au-15Ag-12Cu-6Ni Alloy Sheets. Materials, 17(2), 356. https://doi.org/10.3390/ma17020356