# Different Conical Angle Connection of Implant and Abutment Behavior: A Static and Dynamic Load Test and Finite Element Analysis Study

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Instruments

#### 2.2. Static Load Test Protocol

#### 2.3. Dynamic Load Test Protocol

#### 2.4. Finite Element Analysis (FEA)

^{3}, average element quality of 0.5975, and an element volume ratio of 1.29 × 10

^{−4}, respectively.

#### 2.5. Statistical Analysis

## 3. Results

#### 3.1. Static Load Results

#### 3.2. Dynamic Load Results

#### 3.3. Finite Element Analysis

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Haugen, H.J.; Chen, H. Is There a Better Biomaterial for Dental Implants than Titanium?—A Review and Meta-Study Analysis. J. Funct. Biomater.
**2022**, 13, e46. [Google Scholar] [CrossRef] [PubMed] - Pandey, C.; Rokaya, D.; Bhattarai, B.P. Contemporary Concepts in Osseointegration of Dental Implants: A Review. BioMed Res. Int.
**2022**, 2022, e6170452. [Google Scholar] [CrossRef] [PubMed] - Gupta, S.; Gupta, H.; Tandan, A. Technical complications of implant-causes and management: A comprehensive review. Natl. J. Maxillofac. Surg.
**2015**, 6, 3–8. [Google Scholar] [CrossRef] [PubMed] - Velasco-Ortega, E.; Flichy-Fernández, A.; Punset, M.; Jiménez-Guerra, A.; Manero, J.M.; Gil, J. Fracture and Fatigue of Titanium Narrow Dental Implants: New Trends in Order to Improve the Mechanical Response. Materials
**2019**, 12, e3728. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zarb, G.A.; Schmitt, A. The longitudinal clinical effectiveness of osseointegrated dental implants: The Toronto study. Part III. Problems and complication encountered. J. Prosthet. Dent.
**1990**, 64, 185–194. [Google Scholar] [CrossRef] [PubMed] - Vigolo, P.; Fonzi, F.; Majzoub, Z.; Cordioli, G. An in vitro evaluation of titanium, zirconia, and alumina procera abutments with hexagonal connection. Int. J. Oral. Maxillofac. Implant.
**2006**, 21, 575–580. [Google Scholar] - Khraisat, A.; Stegaroiu, R.; Nomura, S.; Miyakawa, O. Fatigue resistance of two implant/abutment joint designs. J. Prosthet. Dent.
**2002**, 88, 604–610. [Google Scholar] [CrossRef] [PubMed] - Leutert, C.R.; Stawarczyk, B.; Truninger, T.C.; Hämmerle, C.H.; Sailer, I. Bending moments and types of failure of zirconia and titanium abutments with internal implant-abutment connections: A laboratory study. Int. J. Oral Maxillofac. Implant.
**2012**, 27, 505–512. [Google Scholar] - Binon, P.P. Implants and components: Entering the new millennium. Int. J. Oral Maxillofac. Implant.
**2000**, 15, 76–94. [Google Scholar] - Gracis, S.; Michalakis, K.; Vigolo, P.; von Steyern, V.P.; Zwahlen, M.; Sailer, I. Internal vs. external connections for abutments/reconstructions: A systematic review. Clin. Oral Implant. Res.
**2012**, 23, 202–216. [Google Scholar] [CrossRef] - de Moraes, D.S.L.; Verri, F.R.; Santiago, J.J.F.; Almeida, D.A.F.; Lemos, C.A.A.; Gomes, J.M.L.; Pellizzer, E.P. Three-Dimensional Finite Element Analysis of Varying Diameter and Connection Type in Implants with High Crown-Implant Ratio. Braz. Dent. J.
**2018**, 29, 36–42. [Google Scholar] [CrossRef] [PubMed][Green Version] - Merz, B.R.; Hunenbart, S.; Belser, U.C. Mechanics of the implant-abutment connection: An 8-degree taper compared to a butt joint connection. Int. J. Oral Maxillofac. Implant.
**2000**, 15, 19–26. [Google Scholar] - Kuang-Ta, Y.; Kao, H.; Cheng, C.K.; Fang, H.W.; Hsu, M.L. Mechanical performance of conical implant-abutment connections under different cyclic loading conditions. J. Mech. Behav. Biomed. Mater.
**2019**, 90, 426–432. [Google Scholar] - Hsien-Ching, H.; Chiung-Shing, H.; Yu-Hwa, P. The compressive strength of implant-abutment complex with different connection designs. J. Dent. Sci.
**2019**, 14, 318–324. [Google Scholar] - Alikhasi, M.; Monzavi, A.; Bassir, S.H.; Naini, R.B.; Khosronedjad, N.; Keshavarz, S. A comparison of precision of fit, rotational freedom, and torque loss with copy-milled zirconia and pre- fabricated titanium abutments. Int. J. Oral Maxillofac. Implant.
**2013**, 28, 996–1002. [Google Scholar] [CrossRef] - Vinhas, A.S.; Aroso, C.; Salazar, F.; López-Jarana, P.; Ríos-Santos, J.V.; Herrero-Climent, M. Review of the Mechanical Behavior of Different Implant-Abutment Connections. Int. J. Environ. Res. Public Health
**2020**, 17, 8685. [Google Scholar] [CrossRef] - Ricomini, F.A.P.; Fernandes, F.S.F.; Straioto, F.G.; da Siva, J.W.; Cury, D.A.A. Preload Loss and Bacterial Penetration on Different Implant-Abutment Connection Systems. Braz. Dent. J.
**2010**, 21, 123–129. [Google Scholar] [CrossRef][Green Version] - Huang, Y.; Wang, J. Mechanism of and factors associated with the loosening of the implant abutment screw: A review. J. Esthet. Restor. Dent.
**2019**, 31, 338–345. [Google Scholar] [CrossRef] [PubMed] - Alsubaiy, E.F. Abutment screw loosening in implants: A literature review. J. Family Med. Prim. Care
**2020**, 9, 5490–5494. [Google Scholar] [CrossRef] [PubMed] - Hyon-Woo, S.; Seong-Joo, H.; Jai-Young, K.; Seong-Kyun, K.; Shin-Koo, K. Axial Displacement of External and Internal Implant-Abutment Connection Evaluated by Linear Mixed Model Analysis. Int. J. Oral Maxillofac. Implant.
**2015**, 30, 1387–1399. [Google Scholar] - Germán, R.S.; Ortiz, M.M.; Sánchez, P.R.; Zavala, N.A.; Romo, G.F.R. Analysis of the Mechanical Behavior and Effect of Cyclic Fatigue on the Implant-Abutment Interface. Odovtos Int. J. Dent. Sci.
**2021**, 23, 104–114. [Google Scholar] - Chu, C.M.; Huang, H.L.; Hsu, J.T.; Fuh, L.J. Influences of internal tapered abutment designs on bone stresses around a dental implant: Three-dimensional finite element method with statistical evaluation. J. Periodontol.
**2012**, 83, 111–118. [Google Scholar] [CrossRef] - Caricasulo, R.; Malchiodi, L.; Ghensi, P.; Fantozzi, G.; Cucchi, A. The influence of implant-abutment connection to peri-implant bone loss: A systematic review and meta-analysis. Clin. Implant Dent. Relat. Res.
**2018**, 20, 653–664. [Google Scholar] [CrossRef] [PubMed] - Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Platform switch and dental implants: A meta-analysis. J. Dent.
**2015**, 43, 629–646. [Google Scholar] [CrossRef] [PubMed] - Schiegnitz, E.; Al-Nawas, B. Narrow-diameter implants: A systematic review and meta-analysis. Clin. Oral Impl. Res.
**2018**, 29, 21–40. [Google Scholar] [CrossRef][Green Version] - Sasada, Y.; Cochran, D.L. Implant-Abutment Connections. A Review of Biologic Consequences and Peri-implantitis Implications. Int. J. Oral Maxillofac. Implant.
**2017**, 32, 1296–1307. [Google Scholar] [CrossRef][Green Version] - Al-Nsour, M.M.; Hsun-Liang, C.; Hom-Lay, W. Effect of the Platform-Switching Technique on Preservation of Peri-implant Marginal Bone: A Systematic Review. Int. J. Oral Maxillofac. Implant.
**2012**, 27, 138–145. [Google Scholar] - Cumbo, C.; Marigo, L.; Somma, F.; La Torre, G.; Minciacchi, I.; D’Addona, A. Implant platform switching concept: A literature review. Eur. Rev. Med. Pharmacol. Sci.
**2013**, 17, 392–397. [Google Scholar] - Lazzara, R.J.; Porter, S.S. Platform switching: A new concept in implant dentistry for controlling postrestorative crestal bone levels. Int. J. Periodontics Restor. Dent.
**2006**, 26, 9–17. [Google Scholar] - Moon, I.S.; Berglundh, T.; Abrahamsson, I.; Linder, E.; Lindhe, J. The barrier between the keratinized mucosa and the dental implant. An experimental study in the dog. J. Clin. Periodontol.
**1999**, 26, 658–663. [Google Scholar] [CrossRef] - Elleuch, S.; Jrad, H.; Kessentini, A.; Wali, M.; Dammak, F. Design optimization of implant geometrical characteristics enhancing primary stability using FEA of stress distribution around dental prosthesis. Comp. Methods Biomech. Biomed. Eng.
**2021**, 24, 1035–1051. [Google Scholar] [CrossRef] [PubMed] - Camps-Font, O.; Rubianes-Porta, L.; Valmaseda-Castellón, E.; Jung, R.E.; Gay-Escoda, C.; Figueiredo, R. Comparison of external, internal flat-to-flat, and conical implant abutment connections for implant-supported prostheses: A systematic review and network meta-analysis of randomized clinical trials. J. Prosthet. Dent.
**2021**. [Google Scholar] [CrossRef] [PubMed] - Rodrigues, V.V.M.; Faé, D.S.; Rosa, C.D.D.R.D.; Bento, V.A.A.; Lacerda, M.F.L.S.; Pellizzer, E.P.; Lemos, C.A.A. Is the clinical performance of internal conical connection better than internal non-conical connection for implant-supported restorations? A systematic review with meta-analysis of randomized controlled trials. J. Prosthodont.
**2023**. [Google Scholar] [CrossRef] [PubMed] - Santonocito, D.; Nicita, F.; Risitano, G. A Parametric Study on a Dental Implant Geometry Influence on Bone Remodelling through a Numerical Algorithm. Prothesis
**2021**, 3, 157–172. [Google Scholar] [CrossRef] - Tu, M.G.; Hsu, J.T.; Fuh, L.J.; Lin, D.J.; Huang, H.L. Effects of cortical bone thickness and implant length on bone strain and interfacial micromotion in an immediately loaded implant. Int. J. Oral. Maxillofac. Implant.
**2010**, 25, 706–714. [Google Scholar] - Beviacqua, M.; Tealdo, T.; Menini, M.; Mossolov, A.; Drago, C.; Pera, P. The influence of cantilever length and implant inclination on stress distribution in maxillary implant-supported fixed dentures. J. Prosthetic. Dent.
**2011**, 105, 5–13. [Google Scholar] [CrossRef] - Xia, D.; Lin, H.; Yuan, S.; Bai, W.; Zheng, G. Dynamic Fatigue Performance of Implant-abutment Assemblies with Different Tightening Torque Values. Biomed. Mater. Eng.
**2014**, 24, 2143–2146. [Google Scholar] [CrossRef][Green Version] - Han, J.; Ma, Q. Finite Element Analysis of Geotechnical Excavation Based on COMSOL Multiphysics. IOP Conf. Ser. Mater. Sci. Eng.
**2019**, 592, e012060. [Google Scholar] [CrossRef][Green Version] - Dawit-Bogale, A.; Jeng, Y.R. Three-dimensional finite element investigation into effects of implant thread design and loading rate on stress distribution in dental implants and anisotropic bone. Materials
**2021**, 14, 6974. [Google Scholar] - da Rocha, S.S.; Adabo, G.L.; Henriques, G.E.P.; Nóbilo, M.A.A. Vickers Hardness of Cast Commercially Pure Titanium and Ti-6Al-4V Alloy Submitted to Heat Treatments. Braz. Dent. J.
**2006**, 17, 126–129. [Google Scholar] [CrossRef] - González-Carrasco, J.L. Metals as bone repair materials. In Bone Repair Biomaterials: Regeneration and Clinical Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 154–193. [Google Scholar]
- Di Fiore, A.; Montagner, M.; Sivolella, S.; Stellini, E.; Yilmaz, B.; Brunello, G. Peri-Implant Bone Loss and Overload: A Systematic Review Focusing on Occlusal Analysis through Digital and Analogic Methods. J. Clin. Med.
**2022**, 11, 4812. [Google Scholar] [CrossRef] [PubMed] - Karl, M.; Taylor, T.D. Parameters determining micromotion at the implant-abutment interface. Int. J. Oral Maxillofac. Implant.
**2014**, 29, 1338–1347. [Google Scholar] [CrossRef][Green Version] - Boyer, R.; Welsch, G.; Collings, E.W. (Eds.) Materials Properties Handbook: Titanium Alloys; ASM International: Novelty, OH, USA, 1998. [Google Scholar]
- Zhao, W.; Xie, Z.; Li, X.; Yue, X.; Sun, J. Compression after impact behavior of titanium honeycomb sandwich structures. J. Sandw. Struct. Mat.
**2017**, 20, e1099636217707150. [Google Scholar] [CrossRef] - Bertolini, M.M.; Cury, B.A.A.; Pizzoloto, L.; Acapa, I.R.H.; Shibli, J.A.; Bordin, D. Does traumatic occlusal forces lead to peri-implant bone loss? A systematic review. Braz. Oral Res.
**2019**, 33, e069. [Google Scholar] [CrossRef][Green Version] - Mihalko, W.M.; May, T.C.; Kay, J.F.; Krause, W.R. Finite element analysis of interface geometry effects on the crestal bone surrounding a dental implant. Implant Dent.
**1992**, 1, 212–217. [Google Scholar] [CrossRef] [PubMed] - Chamay, A.; Tschantz, P. Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J. Biomech.
**1972**, 5, 173–180. [Google Scholar] [CrossRef] [PubMed] - Fung, Y.C. Biomechanics, Mechanical Properties of Living Tissues; Springer: New York, NY, USA, 1981; pp. 383–415. [Google Scholar]
- Nagy, Á.L.; Tóth, Z.; Tarjányi, T.; Práger, N.T.; Baráth, Z.L. Biomechanical properties of the bone during implant placement. BMC Oral Health
**2021**, 21, e86. [Google Scholar] [CrossRef] - Tyagi, R.; Kumar, S.; Aggarwal, R.; Choudhary, S.; Malethia, A.; Saini, N. A 3-D Finite Element Analysis of Stress Distribution on Implant-supported Fixed Prosthesis with Four Different Commercially Available Implant Systems. J. Contemp. Dent. Pract.
**2020**, 21, 835–840. [Google Scholar] - Dinc, M.M.; Turkoglu, P.; Selvi, F. Biomechanical evaluation of stress distributions at the implant-abutment complex and peri-implant bone around mandibular dental implants with different neck geometries and inclinations. Proc. Inst. Mech. Eng. H
**2021**, 235, 1035–1045. [Google Scholar] [CrossRef] - Baggi, L.; Cappelloni, I.; Di Girolamo, M.; Maceri, F.; Vairo, G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. J. Prosthet. Dent.
**2008**, 100, 422–431. [Google Scholar] [CrossRef][Green Version] - Paepoemsin, T.; Reichart, P.A.; Chaijareenont, P.; Strietzel, F.P.; Khongkhunthian, P. Removal torque evaluation of three different abutment screws for single implant restorations after mechanical cyclic loading. Oral Implantol.
**2016**, 9, 213–221. [Google Scholar] - Benjaboonyazit, K.; Chaijareenont, P.; Khongkhunthian, P. Removal torque pattern of a combined cone and octalobule index implant-abutment connection at different cyclic loading: An in-vitro experimental study. Int. J. Implant. Dent.
**2019**, 5, 1. [Google Scholar] [CrossRef] [PubMed] - Lee, J.H.; Cha, H.S. Screw loosening and changes in removal torque relative to abutment screw length in a dental implant with external abutment connection after oblique cyclic loading. J. Adv. Prosthodont.
**2018**, 10, 415–421. [Google Scholar] [CrossRef][Green Version] - Nugala, B.; Kumar, B.B.S.; Sahitya, S.; Krishna, P.M. Biologic width and its importance in periodontal and restorative dentistry. J. Conserv. Dent.
**2012**, 15, 12–17. [Google Scholar] [CrossRef] [PubMed][Green Version] - Hang, J.T.; Kang, Y.; Xu, G.K.; Gao, H. A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells. Nat. Commun.
**2021**, 12, e6067. [Google Scholar] [CrossRef] [PubMed] - Wang, H.; Hang, J.T.; Chang, Z.; Xu, G.K. Static and dynamic mechanics of cell monolayers: A multi-scale structural model. Acta Mech. Sin.
**2022**, 38, e222006. [Google Scholar] [CrossRef]

**Figure 1.**Fatigue machine used during the experiments and the setup of the static load test. The loading head was perpendicular to the top surface of the implant head.

**Figure 3.**Different meshing options (

**A**: coarse;

**B**: normal;

**C**: finer) and the resulting stress distribution figures.

**Figure 4.**The line defined on the conical interface in the case of a 90° connection to assess mechanical stress.

**Figure 5.**The line defined on the implant side in the case of a 90° connection to assess mechanical stress.

**Figure 6.**Results of the static load tests. Representative load-compression graphs showed differences among different conical angle implants.

**Figure 7.**Compression rate (mean ± SEM) among different conical angle implants in the static load tests.

**Figure 8.**Irreversible vertical compression rate (mean ± SEM) among different conical angle implants and abutment connections.

**Figure 9.**Resilience and energy dissipation (mean ± SEM) among different conical angle implants and abutment connections.

**Figure 10.**The mean measurements for dynamic compression force among different conical angle implants for all 15,000 cycles.

**Figure 11.**Total vertical compression (mean ± SEM) among different conical angle implants at the 15,000th cycle.

**Figure 12.**The irreversible (permanent) deformation (mean ± SEM) among different conical angle implants in the implant–abutment system after the dynamic test.

**Figure 13.**Reverse torque (mean ± SEM) needed to roll apart the implant head and implant after the fatigue test among different conical angle implants.

**Figure 14.**(

**a**–

**h**). Finite element analyses of the mechanical stresses in case of compression at 24° (

**a**–

**d**) and 90° (

**e**–

**h**) conical angle implant and abutment model geometries.

**Figure 15.**The mechanical stress distribution along the selected line on the abutment and implant connection in the case of 24° (orange) and 90° (blue) conical angles.

**Figure 16.**The mechanical stress distribution along the implant height on the side in case of 24° (orange) and 90° (blue) conical angles.

**Table 1.**Results of the post-hoc tests (p-values) during pairwise comparisons of resilience (blue) and energy dissipation (red) among different conical angle implants. p-values < 0.05 are presented in

**boldface**.

24° | 35° | 55° | 75° | 90° | |
---|---|---|---|---|---|

24° | - | 0.721 | 0.030 | 0.002 | 0.145 |

35° | 0.666 | - | 0.065 | 0.004 | 0.260 |

55° | 0.174 | 0.077 | - | 0.250 | 0.493 |

75° | 0.008 | 0.003 | 0.159 | - | 0.079 |

90° | 0.404 | 0.215 | 0.626 | 0.070 | - |

**Table 2.**Results of the post-hoc tests (p-values) during pairwise comparisons of mean vertical compressions among different conical angle implants. p-values < 0.05 are presented in

**boldface**.

24° | 35° | 55° | 75° | 90° | |
---|---|---|---|---|---|

24° | - | ||||

35° | 0.234 | - | |||

55° | 0.204 | 0.932 | - | ||

75° | 0.141 | 0.011 | 0.009 | - | |

90° | 0.490 | 0.065 | 0.055 | 0.422 | - |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Körtvélyessy, G.; Szabó, Á.L.; Pelsőczi-Kovács, I.; Tarjányi, T.; Tóth, Z.; Kárpáti, K.; Matusovits, D.; Hangyási, B.D.; Baráth, Z. Different Conical Angle Connection of Implant and Abutment Behavior: A Static and Dynamic Load Test and Finite Element Analysis Study. *Materials* **2023**, *16*, 1988.
https://doi.org/10.3390/ma16051988

**AMA Style**

Körtvélyessy G, Szabó ÁL, Pelsőczi-Kovács I, Tarjányi T, Tóth Z, Kárpáti K, Matusovits D, Hangyási BD, Baráth Z. Different Conical Angle Connection of Implant and Abutment Behavior: A Static and Dynamic Load Test and Finite Element Analysis Study. *Materials*. 2023; 16(5):1988.
https://doi.org/10.3390/ma16051988

**Chicago/Turabian Style**

Körtvélyessy, Győző, Árpád László Szabó, István Pelsőczi-Kovács, Tamás Tarjányi, Zsolt Tóth, Krisztina Kárpáti, Danica Matusovits, Botond Dávid Hangyási, and Zoltán Baráth. 2023. "Different Conical Angle Connection of Implant and Abutment Behavior: A Static and Dynamic Load Test and Finite Element Analysis Study" *Materials* 16, no. 5: 1988.
https://doi.org/10.3390/ma16051988