Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate
Abstract
1. Introduction
2. Materials
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.; Kim, H.; Jo, S.Y.; Araoka, F.; Yoon, D.K.; Choi, S.W. Photomodulated supramolecular chirality in achiral photoresponsive rodlike compounds nanosegregated from the helical nanofilaments of achiral bent-core molecules. ACS Appl. Mater. Interfaces 2015, 7, 22686–22691. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Noh, Y.W.; Park, D.-W.; Song, M.H.; Choi, S.-W. Development of colored perovskite solar cells using cholesteric helicoidal superstructures. Nano Energy 2022, 93, 106801. [Google Scholar] [CrossRef]
- Jeon, S.W.; Kim, D.Y.; Araoka, F.; Jeong, K.U.; Choi, S.W. Nanosegregated chiral materials with self-assembled hierarchical mesophases: Effect of thermotropic and photoinduced polymorphism in rodlike molecules. Chem. Eur. J. 2017, 23, 17794–17799. [Google Scholar] [CrossRef]
- Sekine, T.; Niori, T.; Watanabe, J.; Furukawa, T.; Choi, S.W.; Takezoe, H. Spontaneous helix formation in smectic liquid crystals comprising achiral molecules. J. Mater. Chem. 1997, 7, 1307–1309. [Google Scholar] [CrossRef]
- Reddy, R.A.; Tschierske, C. Bent-core liquid crystals: Polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J. Mater. Chem. 2006, 16, 907–961. [Google Scholar] [CrossRef]
- Takezoe, H.; Takanishi, Y.J. Bent-core liquid crystals: Their mysterious and attractive world. Appl. Phys. 2006, 45, 597–625. [Google Scholar] [CrossRef]
- Hough, L.E.; Jung, H.T.; Krüerke, D.; Heberling, M.S.; Nakata, M.; Jones, C.D.; Chen, D.; Link, D.R.; Zasadzinski, J.; Heppke, G.; et al. Helical nanofilament phases. Science 2009, 325, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shadpour, S.; Prévot, M.E.; Chirgwin, M.; Nemati, A.; Hegmann, E.; Lemieux, R.P.; Hegmann, T. Molecular conformation of bent-core molecules affected by chiral side chains dictates polymorphism and chirality in organic nano- and microfilaments. ACS Nano 2021, 15, 7249–7270. [Google Scholar] [CrossRef]
- Liu, J.; Molard, Y.; Prévot, M.E.; Hegmann, T. Highly tunable circularly polarized emission of an aggregation-induced emission dye using helical nano- and microfilaments as supramolecular chiral templates. ACS Appl. Mater. Interfaces 2022, 14, 29398–29411. [Google Scholar] [CrossRef]
- Walba, D.M.; Eshdat, L.; Korblova, E.; Shoemaker, R.K. On the nature of the B4 banana phase: Crystal or not a crystal? Cryst. Growth Des. 2005, 5, 2091–2099. [Google Scholar] [CrossRef]
- Chen, D.; Maclennan, J.E.; Shao, R.; Yoon, D.K.; Wang, H.; Korblova, E.; Walba, D.M.; Glaser, M.A.; Clark, N.A. Chirality preserving growth of helical filaments in the B4 phase of bent-core liquid crystals. J. Am. Chem. Soc. 2011, 133, 12656–12663. [Google Scholar] [CrossRef]
- Foley, L.; Park, W.G.; Yang, M.Y.; Carlson, E.; Korblova, E.; Yoon, D.K.; Walba, D.M. Nanoconfinement of the low-temperature dark conglomerate: Structural control from focal conics to helical nanofilaments. Chem. Eur. J. 2019, 25, 7438–7442. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Yoon, D.K. Orientation control of helical nanofilament phase and its chiroptical applications. Crystals 2020, 10, 675. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lee, J.-J.; Park, J.-S.; Choi, Y.-J.; Choi, S.-W. Control of the induced handedness of helical nanofilaments employing cholesteric liquid crystal fields. Molecules 2021, 26, 6055. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-J.; Choi, S.-W. Preferential circularly polarized luminescence from a nano-segregated liquid crystalline phase using a polymerized twisted nematic platform. Polymers 2020, 12, 2529. [Google Scholar] [CrossRef] [PubMed]
- Le, K.V.; Takezoe, H.; Araoka, F. Chiral superstructure mesophases of achiral bent-shaped molecules—Hierarchical chirality amplification and physical properties. Adv. Mater. 2017, 29, 27966798. [Google Scholar] [CrossRef]
- Hough, L.E.; Spannuth, M.; Nakata, M.; Coleman, D.A.; Jones, C.D.; Dantlgraber, G.; Tschierske, C.; Watanabe, J.; Körblova, E.; Walba, D.M.; et al. Chiral isotropic liquids from achiral molecules. Science 2009, 325, 452–456. [Google Scholar] [CrossRef]
- Alaasar, M.; Prehm, M.; Tschierske, C. Helical nano-crystallite (HNC) phases: Chirality synchronization of achiral bent-core mesogens in a new type of dark conglomerates. Chem. Eur. J. 2016, 22, 6583–6597. [Google Scholar] [CrossRef]
- Park, W.G.; Yang, M.Y.; Park, H.W.; Wolska, J.M.; Ahn, H.G.; Shin, T.J.; Pociecha, D.; Gorecka, E.; Yoon, D.K. Directing polymorphism in the helical nanofilament phase. Chem. Eur. J. 2021, 27, 7108–7113. [Google Scholar] [CrossRef]
- Gimeno, N.; Sánchez-Ferrer, A.; Sebastián, N.; Mezzenga, R.; Ros, M.B. Bent-core based main-chain polymers showing the dark conglomerate liquid crystal phase. Macromolecules 2011, 44, 9586–9594. [Google Scholar] [CrossRef]
- Takanishi, Y.; Shin, G.J.; Jung, J.C.; Choi, S.W.; Ishikawa, K.; Watanabe, J.; Takezoe, H.; Toledano, P. Observation of very large chiral domains in a liquid crystal phase formed by mixtures of achiral bent-core and rod molecules. J. Mater. Chem. 2005, 15, 4020–4024. [Google Scholar] [CrossRef]
- Otani, T.; Araoka, F.; Ishikawa, K.; Takezoe, H. Enhanced optical activity by achiral rod-like molecules nanosegregated in the B4 structure of achiral bent-core molecules. J. Am. Chem. Soc. 2009, 131, 12368–12372. [Google Scholar] [CrossRef]
- Lee, J.-J.; Kim, S.; Nishikawa, H.; Takanishi, Y.; Iwayama, H.; Kim, C.; Choi, S.-W.; Araoka, F. Chiroptical performances in self-assembled hierarchical nanosegregated chiral intermediate phases composed of two different achiral bent-core molecules. Int. J. Mol. Sci. 2022, 23, 14629. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Tuchband, M.R.; Horanyi, B.; Korblova, E.; Walba, D.M.; Glaser, M.A.; Maclennan, J.E.; Clark, N.A. Diastereomeric liquid crystal domains at the mesoscale. Nat. Comm. 2015, 6, 7763. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Chen, D.; Shen, Y.; Jones, C.D.; Glaser, M.A.; Maclennan, J.E.; Clark, N.A. Nanophase segregation in binary mixtures of a bent-core and a rodlike liquid-crystal molecule. Phys. Rev. E 2010, 81, 011704. [Google Scholar] [CrossRef]
- Kim, B.C.; Choi, H.J.; Lee, J.J.; Araoka, F.; Choi, S.W. Circularly polarized luminescence induced by chiral super nanospaces. Adv. Funct. Mater. 2019, 29, 1903246. [Google Scholar] [CrossRef]
- Lee, J.J.; Kim, B.C.; Choi, H.J.; Bae, S.; Araoka, F.; Choi, S.W. Inverse helical nanofilament networks serving as a chiral nanotemplate. ACS Nano 2020, 14, 5243–5250. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lee, J.-J.; Choi, S.-W. Chiroptical characteristics of nanosegregated phases in binary mixture consisting of achiral bent-core molecule and bent-core base main-chain polymer. Polymers 2022, 14, 2823. [Google Scholar] [CrossRef]
- Lee, J.-J.; Choi, S.-W. Enhancement of luminescence dissymmetry factor in nano-segregated phase generated by phase separation between helical nanofilaments and liquid-crystalline amectic A phase. Crystals 2020, 10, 952. [Google Scholar] [CrossRef]
- Alaasar, M.; Prehm, M.; Brautzsch, M.; Tschierske, C. Dark conglomerate phases of azobenzene derived bent-core mesogens—Relationships between the molecular structure and mirror symmetry breaking in soft matter. Soft Matter 2014, 10, 7285–7296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-J.; Choi, S.-W. Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate. Materials 2023, 16, 548. https://doi.org/10.3390/ma16020548
Lee J-J, Choi S-W. Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate. Materials. 2023; 16(2):548. https://doi.org/10.3390/ma16020548
Chicago/Turabian StyleLee, Jae-Jin, and Suk-Won Choi. 2023. "Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate" Materials 16, no. 2: 548. https://doi.org/10.3390/ma16020548
APA StyleLee, J.-J., & Choi, S.-W. (2023). Effect of Nematogen Doping in Bent-Core Molecular Systems with a Helical Nanofilament and Dark Conglomerate. Materials, 16(2), 548. https://doi.org/10.3390/ma16020548