Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations
Abstract
1. Introduction
2. Theoretical Methods
3. Results and Discussion
3.1. Structural Properties
3.2. Stability
3.3. Mechanical and Anisotropy Properties
3.4. Electronic Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, Z.Y.; Han, Z.; Liu, X.H.; Yu, X.H.; Wang, D.Y.; Tian, Y. Pnma-BN: Another Boron Nitride Polymorph with Interesting Physical Properties. Nanomaterials 2017, 7, 3. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Yang, J.H.; Zhou, P.K.; Zhang, D.Y.; Yang, Y.T. A New Phase of GaN. J. Chem. 2016, 2016, 8612892. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Zhang, W.Z.; Yun, S.N.; Xu, J.; Song, Y.X. III-Nitride Polymorphs: XN (X = Al, Ga, In) in the Pnma Phase. Chem. Eur. J. 2018, 24, 17280. [Google Scholar] [CrossRef] [PubMed]
- Louhibi-Fasla, S.; Achour, H.; Kefif, K.; Ghalem, Y. First-principles study of high-pressure phases of AlN. Phys. Procedia 2014, 55, 324. [Google Scholar] [CrossRef]
- Liu, C.; Hu, M.; Luo, K.; Cui, L.; Yu, D.; Zhao, Z.S.; He, J.L. Novel high-pressure phases of AlN: A first-principles study. Comput. Mater. Sci. 2016, 117, 496. [Google Scholar] [CrossRef]
- Yang, R.K.; Zhu, C.S.; Wei, Q.; Du, Z. A first-principles study of the properties of four predicted novel phases of AlN. J. Phys. Chem. Solids 2017, 104, 68. [Google Scholar] [CrossRef]
- Yang, R.K.; Zhu, C.S.; Wei, Q.; Du, Z. Phase stability, mechanical and optoelectronic properties of two novel phases of AlN. Mod. Phys. Lett. B 2017, 31, 1750201. [Google Scholar] [CrossRef]
- Zhang, X.; Gui, W.H.; Zeng, Q.F.; Chen, Q.C. Vibrational and dielectric properties of AlN: A first-principles study. Ceram. Int. 2016, 42, 18828. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Zhou, P.K.; Zhang, J.Q.; Yang, Y.T. Thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN under high temperature. Chin. J. Phys. 2017, 55, 400. [Google Scholar] [CrossRef]
- Xu, L.F.; Bu, W. Mechanical and thermodynamic properties of AlX (X = N, P, As) compounds. Int. J. Mod. Phys. B 2017, 31, 1750167. [Google Scholar] [CrossRef]
- Yang, R.K.; Zhu, C.S.; Wei, Q.; Zhang, D.Y. First-principles study on phases of AlP. Solid State Commun. 2017, 267, 23. [Google Scholar] [CrossRef]
- Liu, C.; Ma, M.D.; Yuan, X.H.; Sun, H.; Ying, P.; Xu, B.; Zhao, Z.S.; He, J.L. Metastable phases, phase transformation and properties of AlAs based on first-principle study. Comput. Mater. Sci. 2017, 128, 337. [Google Scholar] [CrossRef]
- Yang, R.K.; Ma, Y.C.; Wei, Q.; Zhang, D.Y. A first-principles investigation of the properties of two predicted novel structures of Sn3P4. Chin. J. Phys. 2018, 56, 886. [Google Scholar] [CrossRef]
- Li, X.Z.; Xing, M.J. Prediction of a novel carbon allotrope from first-principle calculations: A potential superhard material in monoclinic symmetry. Mater. Chem. Phys. 2020, 242, 122480. [Google Scholar] [CrossRef]
- Wang, J.T.; Chen, C.; Mizusekid, H.; Kawazoe, Y. New carbon allotropes in sp + sp3 bonding networks consisting of C8 cubes. Phys. Chem. Chem. Phys. 2018, 20, 7962. [Google Scholar] [CrossRef]
- Zhang, W.; Chai, C.C.; Fan, Q.Y.; Song, Y.X.; Yang, Y.T. PBCF-graphene: A 2D sp2 hybridized honeycomb carbon allotrope with a direct band gap. ChemNanoMat 2020, 6, 139. [Google Scholar] [CrossRef]
- Xing, M.; Li, B.; Yu, Z.; Chen, Q. C2/m-carbon: Structural, mechanical, and electronic properties. J. Mater. Sci. 2015, 50, 7104. [Google Scholar] [CrossRef]
- Zhang, W.; Chai, C.C.; Fan, Q.Y.; Song, Y.X.; Yang, Y.T. Two novel superhard carbon allotropes with honeycomb structures. J. Appl. Phys. 2019, 126, 145704. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Wang, H.; Song, Y.X.; Zhang, W.; Yun, S.N. Five carbon allotropes from Squaroglitter structures. Comput. Mater. Sci. 2020, 178, 109634. [Google Scholar] [CrossRef]
- Cheng, Y.; Melnik, R.; Kawazoe, Y.; Wen, B. Three Dimensional Metallic Carbon from Distorting sp3-Bond. Cryst. Growth. Des. 2016, 16, 1360. [Google Scholar] [CrossRef]
- Xing, M.; Li, B.; Yu, Z.; Chen, Q. A Reinvestigation of a superhard tetragonal sp3 carbon allotrope. Materials 2016, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Yang, Y.T. Two novel silicon phases with direct band gaps. Phys. Chem. Chem. Phys. 2016, 18, 12905. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.G.; Chai, C.C.; Fan, Q.Y.; Liu, Y.Q.; Yang, Y.T. A Novel Silicon Allotrope in the Monoclinic Phase. Materials 2017, 10, 441. [Google Scholar]
- Fan, Q.Y.; Niu, R.; Zhang, W.Z.; Zhang, W.; Ding, Y.C.; Yun, S.N. t-Si64: A Novel Silicon Allotrope. ChemPhysChem 2019, 20, 128. [Google Scholar] [CrossRef] [PubMed]
- He, C.Y.; Shi, X.Z.; Clark, S.J.; Li, J.; Pickard, C.J.; Ouyang, T.; Zhang, C.X.; Tang, C.; Zhong, J.X. Complex Low Energy Tetrahedral Polymorphs of Group IV Elements from First Principles. Phys. Rev. Lett. 2018, 121, 175701. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Zhou, P.K.; Zhang, J.Q.; Yang, Y.T. Si96: A New Silicon Allotrope with Interesting Physical Properties. Materials 2016, 9, 284. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Zhang, W.; Song, Y.; Zhang, W.; Yun, S. P63/mmc-Ge and their Si-Ge alloys with a mouldable direct band gap. Semicond. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Yang, R.L.; Zhang, W.; Yun, S.N. Elastic anisotropy and thermal conductivity of silicon allotropes. Results Phys. 2019, 15, 102580. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M.J. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Semiclassical origin of density functionals. Phys. Rev. 1964, 136, 864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, 1133. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Baroni, S.; de Gironcoli, S.; dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515. [Google Scholar] [CrossRef]
- Petrescu, M.I. Boron nitride theoretical hardness compared to carbon polymorphs. Diam. Relat. Mater. 2004, 13, 1848. [Google Scholar] [CrossRef]
- Grimsditch, M.; Zouboulis, E.S.; Polian, A. Elastic constants of boron nitride. J. Appl. Phys. 1994, 76, 832. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, Q.; Yan, H.Y.; Zhang, M.G. A new superhard carbon allotrope: Tetragonal C64. J. Mater. Sci. 2017, 52, 2385–2391. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Yang, Y.T. Two Novel C3N4 Phases: Structural, Mechanical and Electronic Properties. Materials 2016, 9, 427. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Wang, W.H.; Greer, A.L. Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 2005, 85, 77. [Google Scholar] [CrossRef]
- Anderson, O.L. A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 1963, 24, 909–917. [Google Scholar] [CrossRef]
- Panda, K.B.; Ravi, K.S. Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory. Comput. Mater. Sci. 2006, 35, 134–150. [Google Scholar] [CrossRef]
- Hu, W.C.; Liu, Y.; Li, D.J.; Zeng, X.Q.; Xu, C.S. First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf. Comput. Mater. Sci. 2014, 83, 27–34. [Google Scholar] [CrossRef]
- Qiao, L.P.; Jin, Z. Two B-C-O Compounds: Structural, Mechanical Anisotropy and Electronic Properties under Pressure. Materials 2017, 10, 1413. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Duan, Z.X.; Song, Y.X.; Zhang, W.; Zhang, Q.D.; Yun, S.N. Electronic, Mechanical and Elastic Anisotropy Properties of X-Diamondyne (X = Si, Ge). Materials 2019, 12, 3589. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Wang, P.; Yan, F.; Shi, C.L.; Tian, Y. Physical properties of B4N4-I and B4N4-II: First-principles study. Chin. Phys. B 2019, 28, 036101. [Google Scholar] [CrossRef]
- Fan, Q.; Chai, C.; Wei, Q.; Zhou, P.; Yang, Y. Two novel Ge phases and their Si-Ge alloys with excellent electronic and optical properties. Mater. Des. 2017, 132, 539–551. [Google Scholar] [CrossRef]
- Marmier, A.; Lethbridge, Z.A.D.; Walton, R.I.; Smith, C.W.; Parker, S.C.; Evans, K.E. Elam: A computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. 2010, 181, 2102–2115. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Wei, Q.; Chai, C.C.; Yan, H.Y.; Zhang, M.G.; Lin, Z.Z.; Zhang, Z.X.; Zhang, J.Q.; Zhang, D.Y. Structural, mechanical, and electronic properties of P3m1-BCN. J. Phys. Chem. Solids 2015, 79, 89–96. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Wong, K.Q.; Liu, Y.Q.; Yang, Y.T. Theoretical investigations of group IV alloys in the Lonsdaleite phase. J. Mater. Sci. 2018, 53, 2785–2801. [Google Scholar] [CrossRef]












| Materials | a | V | C11 | C12 | C44 | B | G | B/G | E | v |
|---|---|---|---|---|---|---|---|---|---|---|
| BN | 4.438 | 87.416 | 700 | 85 | 209 | 290 | 244 | 1.189 | 572 | 0.171 |
| AlN | 5.366 | 154.505 | 335 | 59 | 58 | 151 | 83 | 1.819 | 210 | 0.268 |
| GaN | 5.584 | 174.088 | 238 | 61 | 58 | 120 | 69 | 1.739 | 174 | 0.259 |
| InN | 6.237 | 242.570 | 173 | 55 | 36 | 95 | 44 | 2.159 | 114 | 0.299 |
| c-BN | 3.622 | 47.517 | 779 | 165 | 446 | 370 | 384 | 0.964 | 856 | 0.115 |
| 3.620 a | 820 b | 190 | 480 | 400 |
| Space Group | ρ | vs | vp | vm | ΘD | |
|---|---|---|---|---|---|---|
| BN | Pm−3n | 2.829 | 9288 | 14749 | 10222 | 1571 |
| AlN | Pm−3n | 2.643 | 5604 | 9950 | 6235 | 793 |
| GaN | Pm−3n | 4.793 | 3794 | 6651 | 4217 | 515 |
| InN | Pm−3n | 5.291 | 2884 | 5389 | 3221 | 352 |
| BN a | Pnma | 3.040 | 8642 | 14057 | 9537 | 1502 |
| AlN b | Pnma | 2.828 | 5319 | 9508 | 5920 | 770 |
| GaN b | Pnma | 5.114 | 3673 | 6633 | 4092 | 511 |
| InN b | Pnma | 5.642 | 2595 | 5064 | 2907 | 325 |
| AlN b | F−43m | 3.206 | 6169 | 10488 | 6837 | 927 |
| GaN b | F−43m | 5.878 | 4226 | 7274 | 4690 | 613 |
| InN b | F−43m | 6.496 | 2962 | 5493 | 3307 | 387 |
| (100) (010) (001) Plane | (011) (101) (110) Plane | (111) Plane | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Emax | Emin | Emax/Emin | Emax | Emin | Emax/Emin | Emax | Emin | Emax/Emin | |
| BN | 681.86 | 539.60 | 1.26 | 681.86 | 504.72 | 1.35 | 539.60 | 539.60 | 1.00 |
| AlN | 317.06 | 177.10 | 1.79 | 317.06 | 154.30 | 2.05 | 177.10 | 177.10 | 1.00 |
| GaN | 213.69 | 161.49 | 1.32 | 213.69 | 149.40 | 1.43 | 161.49 | 161.49 | 1.00 |
| InN | 145.78 | 105.53 | 1.38 | 145.78 | 96.69 | 1.51 | 105.53 | 105.53 | 1.00 |
| Gmax | Gmin | Gmax/Gmin | Gmax | Gmin | Gmax/Gmin | Gmax | Gmin | Gmax/Gmin | |
| BN | 307.59 | 208.50 | 1.48 | 307.59 | 208.50 | 1.48 | 307.59 | 208.50 | 1.48 |
| AlN | 137.68 | 57.88 | 2.38 | 137.68 | 57.88 | 2.38 | 137.68 | 57.88 | 2.38 |
| GaN | 88.79 | 57.78 | 1.54 | 88.79 | 57.78 | 1.54 | 88.79 | 57.78 | 1.54 |
| InN | 58.60 | 36.34 | 1.61 | 58.60 | 36.34 | 1.61 | 58.60 | 36.34 | 1.61 |
| vmax | vmin | vmax/vmin | vmax | vmin | vmax/vmin | vmax | vmin | vmax/vmin | |
| BN | 0.29 | 0.09 | 3.22 | 0.29 | 0.09 | 3.22 | 0.29 | 0.09 | 3.22 |
| AlN | 0.53 | 0.08 | 6.63 | 0.53 | 0.08 | 6.63 | 0.53 | 0.08 | 6.63 |
| GaN | 0.40 | 0.15 | 2.67 | 0.40 | 0.15 | 2.67 | 0.40 | 0.15 | 2.67 |
| InN | 0.45 | 0.18 | 2.50 | 0.45 | 0.18 | 2.50 | 0.45 | 0.18 | 2.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zou, Y.; Fan, Q.; Yang, Y. Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations. Materials 2020, 13, 1280. https://doi.org/10.3390/ma13061280
Zhang Q, Zou Y, Fan Q, Yang Y. Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations. Materials. 2020; 13(6):1280. https://doi.org/10.3390/ma13061280
Chicago/Turabian StyleZhang, Qidong, Yucong Zou, Qingyang Fan, and Yintang Yang. 2020. "Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations" Materials 13, no. 6: 1280. https://doi.org/10.3390/ma13061280
APA StyleZhang, Q., Zou, Y., Fan, Q., & Yang, Y. (2020). Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations. Materials, 13(6), 1280. https://doi.org/10.3390/ma13061280
