Mechanical Properties of Small Clear Specimens of Eucalyptus globulus Labill
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimens
2.2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aicher, S.; Christian, Z.; Dill-Langer, G. Hardwood glulams—Emerging timber products of superior mechanical properties. In Proceedings of the World Conference on Timber Engineering, Quebec City, QC, Canada, 10–14 August 2014. [Google Scholar]
- Potts, B.M.; Vaillancourt, R.E.; Jordan, G.; Dutkowski, G.; da Costa e Silva, J.; McKinnon, G.; Steane, D.; Volker, P.; Lopez, G.; Apiolaza, L.; et al. Exploration of the Eucalyptus globulus gene pool. In Proceedings of the Eucalyptus in a Changing World—International IUFRO Conference, Aveiro, Portugal, 11–15 October 2004. [Google Scholar]
- UNE 56546:2013. Visual Grading for Structural Sawn Timber: Hardwood Timber; The Spanish Association for Standardization and Certification (AENOR): Madrid, Spain, 2013. (In Spanish) [Google Scholar]
- EN 1912:2012. Structural Timber Strength Classes—Assignment of Visual Grades and Species; The Spanish Association for Standardization and Certification (AENOR): Madrid, Spain, 2012. [Google Scholar]
- EN 350:2016. Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials; The Spanish Association for Standardization and Certification (AENOR): Madrid, Spain, 2016. [Google Scholar]
- Franke, S.; Marto, J. Investigation of Eucalyptus globulus wood for the use as an engineered material. In Proceedings of the World Conference on Timber Engineering, Quebec City, QC, Canada, 10–14 August 2014. [Google Scholar]
- López-Suevos, F.; Richter, K. Hydroxymethylated resorcinol (HMR) and novolak-based HMR (n-HMR) primers to enhance bond durability of Eucalyptus globulus glulams. J. Adhes. Sci. Technol. 2009, 23, 1925–1937. [Google Scholar] [CrossRef]
- Lara-Bocanegra, A.J.; Majano-Majano, A.; Crespo, J.; Guaita, M. Finger-jointed Eucalyptus globulus with 1C-PUR adhesive for high performance engineered laminated products. Constr. Build. Mater. 2017, 135, 529–537. [Google Scholar] [CrossRef]
- Pangh, H.; Hosseinabadi, H.Z.; Kotlarewski, N.; Moradpour, P.; Lee, M.; Nolan, G. Flexural performance of cross-laminated timber constructed from fibre-managed plantation eucalyptus. Constr. Build. Mater. 2019, 208, 535–542. [Google Scholar] [CrossRef]
- Derikvand, M.; Jiao, H.; Kotlarewski, N.; Michael, L.; Chan, A.; Nolan, G. Bending performance of nail-laminated timber constructed of fast-grown plantation eucalypt. Eur. J. Wood Wood Prod. 2019, 77, 421–437. [Google Scholar] [CrossRef]
- Schmidt, J.; Kaliske, M. Models for numerical failure analysis of wooden structures. Eng. Struct. 2009, 31, 571–579. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids-Structure and Properties; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Caldeira, T.V.P.; Dourado, N.; de Jesus, A.M.P.; de Moura, M.F.S.F.; Morais, J.J.L. Quasi-static behavior of moment-carrying steel-wood doweled joints. Constr. Build. Mater. 2014, 53, 439–447. [Google Scholar] [CrossRef]
- Franke, B.; Quenneville, P. Numerical modelling of the failure behaviour of dowel connections in wood. J. Eng. Mech. 2011, 137, 186–195. [Google Scholar] [CrossRef]
- Villar, J.R.; Guaita, M.; Vidal, P.; Arriaga, F. Analysis of the stress state at the cogging joint in timber structures. Biosyst. Eng. 2007, 96, 79–90. [Google Scholar] [CrossRef]
- Crespo, J.; Aira, J.R.; Vázquez, C.; Guaita, M. Comparative analysis of the elastic constants measured via conventional, ultrasound, and 3-D Digital Image Correlation methods in Eucalyptus globulus. Bioresources 2017, 12, 3728–3743. [Google Scholar] [CrossRef]
- Crespo, J.; Majano-Majano, A.; Xavier, J.; Guaita, M. Determination of the resistance-curve in Eucalyptus globulus through double cantilever beam tests. Mater. Struct. 2018, 51, 77. [Google Scholar] [CrossRef]
- Majano-Majano, A.; Lara-Bocanegra, A.J.; Xavier, J.; Morais, J. Measuring the cohesive law in mode I loading of Eucalyptus globulus. Materials 2019, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Majano-Majano, A.; Lara-Bocanegra, A.J.; Xavier, J.; Morais, J. Experimental Evaluation of Mode II fracture Properties of Eucalyptus globulus L. Materials 2020, 13, 745. [Google Scholar] [CrossRef] [PubMed]
- ISO 13061-1:2014. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 1: Determination of Moisture Content for Physical and Mechanical Tests; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- ISO 13061-2:2014. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- ISO 13061-6:2014. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 6: Determination of Ultimate Tensile Stress Parallel to Grain; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- GOM mbH. ARAMIS Commercial Software; ARAMIS 6.0.2; GOM mbH: Braunschweig, Germany, 2007. [Google Scholar]
- UNE 56538:1978. Physical-Mechanical Characteristics of Wood: Determination of Strength in Tension Perpendicular to the Grain; The Spanish Association for Standardization and Certification (AENOR): Madrid, Spain, 1978. [Google Scholar]
- ISO 13061-17:2017. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 17: Determination of Ultimate Stress in Compression Parallel to Grain; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- ISO 13061-5:2020. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 5: Determination of Strength in Compression Perpendicular to Grain; International Organization for Standardization: Geneva, Switzerland, 2020. [Google Scholar]
- EN 408:2011. Timber Structures—Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties; The Spanish Association for Standardization and Certification (AENOR): Madrid, Spain, 2011. [Google Scholar]
- UNE 56543:1988. Physical-Mechanical Characteristics of Wood: Determination of Shear Stress; The Spanish Association for Standardization and Certification (AENOR): Madrid, Spain, 1988. [Google Scholar]
- Crespo Outes, J.; Regueira Gay, R.; Soilán Cañás, A.; Diez Barra, M.R.; Guaita Fernández, M. Desarrollo de metodología para la determinación de los coeficientes de fricción estático y dinámico de diferentes especies de madera (In English: Development of methodology for the determination of static and dynamic friction coefficients of different wood species). In Proceedings of the CIMAD 11—1° Congresso Ibero-Latino Americano da Madeira na Construção, Coimbra, Portugal, 7–9 June 2011. [Google Scholar]
- Baño, V.; Argüelles-Bustillo, R.; Regueira, R.; Guaita, M. Determination of the stress-strain curve in specimens of Scots pine for numerical simulation of defect free beams. Mater. Constr. 2012, 62, 269–284. [Google Scholar] [CrossRef]
- Fernández-Golfín, J.I.; Díez, M.R.; Baonza, M.V.; Gutiérrez, A.; Hermoso, E.; Conde, M.; Van den Eynde, V. Quality and properties of Spanish Laricio Pine (Pinus nigra Arn. Salzmannii). For. Syst. 2001, 10, 311–331. (In Spanish) [Google Scholar]
- Green, D.W. Wood: Strength and Stiffness. In Encyclopedia of Materials: Science and Technology; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2001; pp. 9732–9736. [Google Scholar]
- Gherardi Hein, P.R.; Brancheriau, L. Comparison between three-point and four-point flexural tests to determine wood strength of eucalyptus specimen. Maderas Cienc. Tecnol. 2018, 20, 333–342. [Google Scholar] [CrossRef]
- Kretschmann, D.E. Mechanical Properties of Wood. In Wood Handbook—Wood as an Engineering Material; Forest Products Laboratory: Madison, WI, USA, 2010. [Google Scholar]
Mechanical Property | Symbol | n | Mean | SD | CoV |
---|---|---|---|---|---|
Tension parallel to grain | |||||
Ultimate stress (MPa) | σt,0 | 20 | 176.3 | 39.6 | 22% |
Modulus of elasticity (GPa) | Et,0 | 20 | 23.80 | 4466 | 19% |
Tension perpendicular to grain | |||||
Ultimate stress (MPa) | σt,90 | 36 | 7.5 | 1.2 | 16% |
Compression parallel to grain | |||||
Ultimate stress (MPa) | σc,0 | 20 | 73.6 | 13.4 | 18% |
Modulus of elasticity (GPa) | Ec,0 | 20 | 18.06 | 5155 | 29% |
Compression perpendicular to grain | |||||
Proportional limit stress—radial (MPa) | σc,90,R,y | 20 | 11.1 | 2.5 | 22% |
Modulus of elasticity—radial (GPa) | Ec,90,R | 20 | 1.78 | 595 | 33% |
Stress at 2mm deformation—radial (MPa) | σc,90,R,2 | 20 | 13.0 | 2.8 | 22% |
Proportional limit stress—tangential (MPa) | σc,90,T,y | 20 | 10.2 | 4.0 | 39% |
Modulus of elasticity—tangential (GPa) | Ec,90,T | 20 | 0.69 | 218 | 32% |
Stress at 2mm deformation—tangential (MPa) | σc,90,T,2 | 20 | 13.6 | 4.4 | 33% |
Static bending | |||||
Ultimate stress (MPa) | σm | 22 | 124.1 | 22.2 | 18% |
Modulus of elasticity (GPa) | Em | 22 | 22.27 | 4170 | 19% |
Shear parallel to grain | |||||
Ultimate stress (MPa) | σv | 44 | 16.2 | 3.0 | 19% |
Friction coefficient | |||||
0° | μs,0 | 44 | 0.08 | 0.04 | 50% |
45° | μs,45 | 43 | 0.20 | 0.08 | 40% |
90° | μs,90 | 43 | 0.24 | 0.09 | 36% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo, J.; Majano-Majano, A.; Lara-Bocanegra, A.J.; Guaita, M. Mechanical Properties of Small Clear Specimens of Eucalyptus globulus Labill. Materials 2020, 13, 906. https://doi.org/10.3390/ma13040906
Crespo J, Majano-Majano A, Lara-Bocanegra AJ, Guaita M. Mechanical Properties of Small Clear Specimens of Eucalyptus globulus Labill. Materials. 2020; 13(4):906. https://doi.org/10.3390/ma13040906
Chicago/Turabian StyleCrespo, Jorge, Almudena Majano-Majano, Antonio José Lara-Bocanegra, and Manuel Guaita. 2020. "Mechanical Properties of Small Clear Specimens of Eucalyptus globulus Labill" Materials 13, no. 4: 906. https://doi.org/10.3390/ma13040906
APA StyleCrespo, J., Majano-Majano, A., Lara-Bocanegra, A. J., & Guaita, M. (2020). Mechanical Properties of Small Clear Specimens of Eucalyptus globulus Labill. Materials, 13(4), 906. https://doi.org/10.3390/ma13040906