Microstructure and Thermal Stability of Cu/TixSiyN/AlSiN Solar Selective Absorbing Coating
Abstract
1. Introduction
2. Experiment Details
3. Results and Discussions
3.1. Microstructure and Optical Characterization
3.2. Thermal Stability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, F.; McEnaney, K.; Chen, G.; Ren, Z. A review of cermet-based spectrally selective solar absorbers. Energy Environ. Sci. 2014, 7, 1615–1627. [Google Scholar] [CrossRef]
- Wang, X.; Luo, T.; Li, Q.; Cheng, X.; Li, K. High performance aperiodic metal-dielectric multilayer stacks for solar energy thermal conversion. Sol. Energy Mater. Sol. Cells 2019, 191, 372–380. [Google Scholar] [CrossRef]
- Qiu, X.-L.; Gao, X.-H.; Zhou, T.-H.; Chen, B.-H.; Lu, J.-Z.; Guo, H.-X.; Li, X.-T.; Liu, G. Structure, thermal stability and chromaticity investigation of TiB2 based high temperature solar selective absorbing coatings. Sol. Energy 2019, 181, 88–94. [Google Scholar] [CrossRef]
- Amri, A.; Jiang, Z.T.; Pryor, T.; Yin, C.-Y.; Djordjevic, S. Developments in the synthesis of flat plate solar selective absorber materials via sol–gel methods: A review. Renew. Sustain. Energy Rev. 2014, 36, 316–328. [Google Scholar] [CrossRef]
- Cao, B.; Du, G.; Wu, H. World energy trend to 2030—Analysis of major global energy outlook reports. Int. Pet. Econ. 2016, 24, 8–16. [Google Scholar]
- Kim, T.K.; VanSaders, B.; Caldwell, E.; Shin, S.; Liu, Z.; Jin, S.; Chen, R. Copper-alloyed spinel black oxides and tandem-structured solar absorbing layers for high-temperature concentrating solar power systems. Sol. Energy 2016, 132, 257–266. [Google Scholar] [CrossRef]
- El-Mahallawy, N.; Atia, M.R.A.; Khaled, A.; Shoeib, M. Design and simulation of different multilayer solar selective coatings for solar thermal applications. Mater. Res. Express 2018, 5, 046402. [Google Scholar] [CrossRef]
- Ma, P.; Geng, Q.; Gao, X.; Yang, S.; Liu, G. Aqueous solution-chemical derived spinel Cu1.5Mn1.5O4 thin film for solar absorber application. Mater. Lett. 2016, 179, 170–174. [Google Scholar] [CrossRef]
- Dan, A.; Chattopadhyay, K.; Barshilia, H.C.; Basu, B. Colored selective absorber coating with excellent durability. Thin Solid Films 2016, 620, 17–22. [Google Scholar] [CrossRef]
- Nuru, Z.Y.; Msimanga, M.; Arendse, C.J.; Maaza, M. Heavy ion elastic recoil detection analysis of AlxOy/Pt/AlxOy multilayer selective solar absorber. Appl. Surf. Sci. 2014, 298, 176–181. [Google Scholar] [CrossRef]
- Rodríguez-Palomo, A.; Céspedes, E.; Hernández-Pinilla, D.; Prieto, C. High-temperature air-stable solar selective coating based on MoSi2–Si3N4 composite. Sol. Energy Mater. Sol. Cells 2018, 174, 50–55. [Google Scholar] [CrossRef]
- Ahmad, N.; Stokes, J.; Cryan, M.J. Solar absorbers using 1D and 2D periodic nanostructured nickel films. J. Opt. 2014, 16, 125003–125010. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, S.; Liu, X.; Yu, H.; Ding, H.; Tian, Y.; Ouyang, J. Solar selective absorbing coatings TiN/TiSiN/SiN prepared on stainless steel substrates. Vacuum 2015, 121, 135–141. [Google Scholar] [CrossRef]
- Bichotte, M.; Dubost, L.; Pouit, T.; Soum-Glaude, A.; Le Gal, A.; Glenat, H.; Itskhokine, D. Arc deposited TiAlN selective absorber for high temperature CSP applications. Mater. Rev. 2016, 1734, 030006. [Google Scholar]
- Yuan, W.; Liu, X.; Li, L. Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation. Appl. Surf. Sci. 2014, 319, 350–357. [Google Scholar] [CrossRef]
- Maaza, M.; Nemraoui, O.; Sella, C.; Lafait, J.; Gibaud, A.; Pischedda, V. Thermal morphological evolution of platinum nano-particles in Pt–Al2O3 nano-composites. Phys. Lett. A 2005, 344, 57–63. [Google Scholar] [CrossRef]
- Nuru, Z.Y.; Arendse, C.J.; Muller, T.F.; Khamlich, S.; Maaza, M. Thermal stability of electron beam evaporated AlxOy/Pt/AlxOy multilayer solar absorber coatings. Sol. Energy Mater. Sol. Cells 2014, 120, 473–480. [Google Scholar] [CrossRef]
- Zou, C.; Xie, W.; Shao, L. Functional multi-layer solar spectral selective absorbing coatings of AlCrSiN/AlCrSiON/AlCrO for high temperature applications. Sol. Energy Mater. Sol. Cells 2016, 153, 9–17. [Google Scholar] [CrossRef]
- Gao, X.-H.; Guo, Z.-M.; Geng, Q.-F.; Ma, P.-J.; Wang, A.-Q.; Liu, G. Microstructure, chromaticity and thermal stability of SS/TiC-WC/Al2O3 spectrally selective solar absorbers. Sol. Energy Mater. Sol. Cells 2017, 164, 63–69. [Google Scholar] [CrossRef]
- Wang, H.; Haechler, I.; Kaur, S.; Freedman, J.; Prasher, R. Spectrally selective solar absorber stable up to 900 °C for 120 h under ambient conditions. Sol. Energy 2018, 174, 305–311. [Google Scholar] [CrossRef]
- Khelifa, A.B.; Soum-Glaude, A.; Khamlich, S.; Glénat, H.; Balghouthi, M.; Guizani, A.A.; Maaza, M.; Dimassi, W. Optical simulation, characterization and thermal stability of Cr2O3/Cr/Cr2O3multilayer solar selective absorber coatings. J. Alloys Compd. 2019, 783, 533–544. [Google Scholar] [CrossRef]
- Li, B.; Qi, D.; Wang, X.; Wang, F.; Nie, Y.; Gong, R. Enhanced spectra selectivity of solar absorber film with Ti/Si3N4 photonic structures. Mater. Lett. 2017, 201, 5–8. [Google Scholar] [CrossRef]
- Rebouta, L.; Sousa, A.; Capela, P.; Andritschky, M.; Santilli, P.; Matilainen, A.; Pischow, K.; Barradas, N.P.; Alves, E. Solar selective absorbers based on Al2O3:W cermets and AlSiN/AlSiON layers. Sol. Energy Mater. Sol. Cells 2015, 137, 93–100. [Google Scholar] [CrossRef]
- Liu, H.D.; Wan, Q.; Xu, Y.R.; Luo, C.; Chen, Y.M.; Fu, D.J.; Ren, F.; Luo, G.; Cheng, X.D.; Hu, X.J.; et al. Long-term thermal stability of CrAlO-based solar selective absorbing coating in elevated temperature air. Sol. Energy Mater. Sol. Cells 2015, 134, 261–267. [Google Scholar] [CrossRef]
- Rebouta, L.; Sousa, A.; Andritschky, M.; Cerqueira, F.; Tavares, C.J.; Santilli, P.; Pischow, K. Solar selective absorbing coatings based on AlSiN/AlSiON/AlSiO y layers. Appl. Surf. Sci. 2015, 356, 203–212. [Google Scholar] [CrossRef]
- Moumouh, J.; Tahiri, M.; Salouhi, M. Solar thermal energy combined with humidification–dehumidification process for desalination brackish water: Technical review. Int. J. Hydrogen Energy 2014, 39, 15232–15237. [Google Scholar] [CrossRef]
- Ning, Y.; Wang, W.; Wang, L.; Sun, Y.; Song, P.; Man, H.; Zhang, Y.; Dai, B.; Zhang, J.; Wang, C.; et al. Optical simulation and preparation of novel Mo/ZrSiN/ZrSiON/SiO2 solar selective absorbing coating. Sol. Energy Mater. Sol. Cells 2017, 167, 178–183. [Google Scholar] [CrossRef]
Layer | Flow Rate (sccm) | Sputtering Pressure (Pa) | Deposition Voltage (V) | Average Current (A) | Deposition Time (min) | Thickness (nm) | |
---|---|---|---|---|---|---|---|
Ar | N2 | ||||||
Cu | 40 | 0 | 0.6 | 368 | 0.5 | 15 | 100 |
TixSiyNH | 40 | 25 | 1.0 | 470 | 0.6 | 10 | 80 |
TixSiyNL | 40 | 40 | 1.0 | 460 | 0.5 | 10 | 70 |
AlSiN | 40 | 40 | 0.6 | 510 | 0.5 | 7 | 70 |
Layer | Absorptance (α) | Emittance (ε) | Solar Selectivity (S) |
---|---|---|---|
Cu | 0.317 | 0.063 | 5.03 |
Cu/TixSiyNH | 0.786 | 0.069 | 11.39 |
Cu/TixSiyNH-TixSiyNL | 0.827 | 0.074 | 11.18 |
Cu/TixSiyNH-TixSiyNL/AlSiN | 0.934 | 0.044 | 21.23 |
TixSiyNH-TixSiyNL/AlSiN | 0.958 | 0.150 | 6.39 |
Sample # | Absorptance (α) | Emittance (ε) | Solar Selectivity (α/ε) |
---|---|---|---|
1 | 0.948 | 0.053 | 17.89 |
2 | 0.945 | 0.054 | 17.50 |
3 | 0.947 | 0.075 | 12.63 |
4 | 0.942 | 0.068 | 13.85 |
5 | 0.943 | 0.047 | 20.06 |
6 | 0.932 | 0.053 | 17.58 |
7 | 0.940 | 0.070 | 13.43 |
8 | 0.934 | 0.044 | 21.23 |
Average | 0.941 | 0.058 | 16.23 |
Standard deviation | 0.0058 | 0.0107 | 2.9581 |
Heat Treatment in Air at 200 °C (h) | Absorptance (α) | Emittance (ε) | PC |
---|---|---|---|
As-deposited | 0.948 | 0.053 | - |
200 | 0.943 | 0.056 | 0.0065 |
400 | 0.939 | 0.058 | 0.0115 |
800 | 0.932 | 0.065 | 0.022 |
1200 | 0.923 | 0.076 | 0.0365 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhang, Y.; Zhang, Q.; Pang, W.; Yan, H.; Li, G. Microstructure and Thermal Stability of Cu/TixSiyN/AlSiN Solar Selective Absorbing Coating. Materials 2020, 13, 882. https://doi.org/10.3390/ma13040882
Yu H, Zhang Y, Zhang Q, Pang W, Yan H, Li G. Microstructure and Thermal Stability of Cu/TixSiyN/AlSiN Solar Selective Absorbing Coating. Materials. 2020; 13(4):882. https://doi.org/10.3390/ma13040882
Chicago/Turabian StyleYu, Hongwen, Yanli Zhang, Qian Zhang, Wei Pang, Hui Yan, and Guangyuan Li. 2020. "Microstructure and Thermal Stability of Cu/TixSiyN/AlSiN Solar Selective Absorbing Coating" Materials 13, no. 4: 882. https://doi.org/10.3390/ma13040882
APA StyleYu, H., Zhang, Y., Zhang, Q., Pang, W., Yan, H., & Li, G. (2020). Microstructure and Thermal Stability of Cu/TixSiyN/AlSiN Solar Selective Absorbing Coating. Materials, 13(4), 882. https://doi.org/10.3390/ma13040882