Graded and Anisotropic Porous Materials for Broadband and Angular Maximal Acoustic Absorption
Abstract
1. Introduction
2. Reminder on Anisotropic and Graded Porous Materials
3. Average and Diffuse Field Absorptions
4. Optimization Procedures
4.1. Interpolated Database of Unit Cells
4.2. Macro-Modulation of Effective Properties
4.3. Optimization of Geometric Properties
5. Results
5.1. Sub–Wavelength Acoustic Absorption
5.2. Broadband Acoustic Absorption
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
TMM | Transfer matrix method |
FEM | Finite elements method |
PS | Peano series |
WSTGF | Wave-splitting transfer Green functions |
PCHIP | Piecewise cubic Hermite interpolating polynomial |
JCAL | Johnson–Champoux–Allard–Lafarge |
References
- Zwikker, C.; Kosten, C.W. Sound Absorbing Materials; Elsevier: New York, NY, USA, 1949. [Google Scholar]
- Attenborough, K. Acoustical characteristics of porous materials. Phys. Rep. 1982, 82, 179–227. [Google Scholar] [CrossRef]
- Eijk, J.V.D.; Kosten, C.W.; Kok, W. Sound absorption by porous materials I. Appl. Sci. Res. Sect. B 1950, 1, 50–62. [Google Scholar] [CrossRef][Green Version]
- Paris, E. On the coefficient of sound-absorption measured by the reverberation method. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1928, 5, 489–497. [Google Scholar] [CrossRef]
- Ingard, K.U. Noise Reduction Analysis; Physics Series; Jones and Bartlett Publ: Sudbury, MA, USA, 2010. [Google Scholar]
- Cox, T.J.; D’Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design And Application, 3rd ed.; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2017. [Google Scholar]
- Pierce, A.D. Acoustics: An Introduction to Its Physical Principles and Applications; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Allard, J.F. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials; Elsevier Applied Science: London, UK; New York, NY, USA, 1993. [Google Scholar]
- Lafarge, D.; Lemarinier, P.; Allard, J.F.; Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 1997, 102, 1995–2006. [Google Scholar] [CrossRef]
- Auriault, J.L.; Boutin, C.; Geindreau, C. Homogenization of Coupled Phenomena in Heterogenous Media; John Wiley & Sons: London, UK; Hoboken, NJ, USA, 2009. [Google Scholar]
- Tarnow, V. Measured anisotropic air flow resistivity and sound attenuation of glass wool. J. Acoust. Soc. Am. 2002, 111, 2735–2739. [Google Scholar] [CrossRef]
- Van der Kelen, C.; Göransson, P. Identification of the full anisotropic flow resistivity tensor for multiple glass wool and melamine foam samples. J. Acoust. Soc. Am. 2013, 134, 4659–4669. [Google Scholar] [CrossRef]
- Terroir, A.; Schwan, L.; Cavalieri, T.; Romero-García, V.; Gabard, G.; Groby, J.P. General method to retrieve all effective acoustic properties of fully-anisotropic fluid materials in three dimensional space. J. Appl. Phys. 2019, 125, 025114. [Google Scholar] [CrossRef]
- Boulvert, J.; Cavalieri, T.; Costa-Baptista, J.; Schwan, L.; Romero-García, V.; Gabard, G.; Fotsing, E.R.; Ross, A.; Mardjono, J.; Groby, J.P. Optimally graded porous material for broadband perfect absorption of sound. J. Appl. Phys. 2019, 126, 175101. [Google Scholar] [CrossRef]
- Zieliński, T.G.; Venegas, R.; Perrot, C.; Červenka, M.; Chevillotte, F.; Attenborough, K. Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media. J. Sound Vib. 2020, 483, 115441. [Google Scholar] [CrossRef]
- Krueger, R.; Ochs, R. A green’s function approach to the determination of internal fields. Wave Motion 1989, 11, 525–543. [Google Scholar] [CrossRef]
- Borzdov, G.N. Frequency domain wave-splitting techniques for plane stratified bianisotropic media. J. Math. Phys. 1997, 38, 6328–6366. [Google Scholar] [CrossRef]
- Shuvalov, A.; Poncelet, O.; Deschamps, M. General formalism for plane guided waves in transversely inhomogeneous anisotropic plates. Wave Motion 2004, 40, 413–426. [Google Scholar] [CrossRef]
- Baron, C. Matricant Peano Series Development to Study Elastic Waves Propagation in Continuously Varying Properties Materials. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2005. [Google Scholar]
- Gautier, G.; Kelders, L.; Groby, J.P.; Dazel, O.; De Ryck, L.; Leclaire, P. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material. J. Acoust. Soc. Am. 2011, 130, 1390–1398. [Google Scholar] [CrossRef]
- Geslain, A.; Groby, J.P.; Dazel, O.; Mahasaranon, S.; Horoshenkov, K.V.; Khan, A. An application of the Peano series expansion to predict sound propagation in materials with continuous pore stratification. J. Acoust. Soc. Am. 2012, 132, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Cavalieri, T.; Boulvert, J.; Schwan, L.; Gabard, G.; Romero-Garcìa, V.; Groby, J.P.; Escouflaire, M.; Mardjono, J. Acoustic wave propagation in effective graded fully anisotropic fluid layers. J. Acoust. Soc. Am. 2019, 146, 3400–3408. [Google Scholar] [CrossRef]
- Pease, M.C. Methods of Matrix Algebra; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Brouard, B.; Lafarge, D.; Allard, J.F. A general method of modelling sound propagation in layered media. J. Sound Vib. 1995, 183, 129–142. [Google Scholar] [CrossRef]
- Teperik, T.V.; García de Abajo, F.J.; Borisov, A.G.; Abdelsalam, M.; Bartlett, P.N.; Sugawara, Y.; Baumberg, J.J. Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2008, 2, 299–301. [Google Scholar] [CrossRef]
- Fritsch, F.N.; Carlson, R.E. Monotone Piecewise Cubic Interpolation. SIAM J. Numer. Anal. 1980, 17, 238–246. [Google Scholar] [CrossRef]
- Darcy, H. Les Fontaines Publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau; Hachette Livre BNF: Paris, France, 1856. [Google Scholar]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Press, W.H. (Ed.) Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Romero-García, V.; Theocharis, G.; Richoux, O.; Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am. 2016, 139, 3395–3403. [Google Scholar] [CrossRef]
- Groby, J.P.; Pommier, R.; Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J. Acoust. Soc. Am. 2016, 139, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Luk, T.S.; Campione, S.; Kim, I.; Feng, S.; Jun, Y.C.; Liu, S.; Wright, J.B.; Brener, I.; Catrysse, P.B.; Fan, S.; et al. Directional perfect absorption using deep subwavelength low-permittivity films. Phys. Rev. B 2014, 90, 085411. [Google Scholar] [CrossRef]
- Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 2016, 6, 19519. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalieri, T.; Boulvert, J.; Gabard, G.; Romero-García, V.; Escouflaire, M.; Regnard, J.; Groby, J.-P. Graded and Anisotropic Porous Materials for Broadband and Angular Maximal Acoustic Absorption. Materials 2020, 13, 4605. https://doi.org/10.3390/ma13204605
Cavalieri T, Boulvert J, Gabard G, Romero-García V, Escouflaire M, Regnard J, Groby J-P. Graded and Anisotropic Porous Materials for Broadband and Angular Maximal Acoustic Absorption. Materials. 2020; 13(20):4605. https://doi.org/10.3390/ma13204605
Chicago/Turabian StyleCavalieri, Théo, Jean Boulvert, Gwénaël Gabard, Vicent Romero-García, Marie Escouflaire, Josselin Regnard, and Jean-Philippe Groby. 2020. "Graded and Anisotropic Porous Materials for Broadband and Angular Maximal Acoustic Absorption" Materials 13, no. 20: 4605. https://doi.org/10.3390/ma13204605
APA StyleCavalieri, T., Boulvert, J., Gabard, G., Romero-García, V., Escouflaire, M., Regnard, J., & Groby, J.-P. (2020). Graded and Anisotropic Porous Materials for Broadband and Angular Maximal Acoustic Absorption. Materials, 13(20), 4605. https://doi.org/10.3390/ma13204605