Inhomogeneity and Anisotropy in Nanostructured Melt-Spun Ti2NiCu Shape-Memory Ribbons
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.2. Grazing Incidence Diffraction (GIXD)
3.3. Crystallographic Preferred Orientation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bechtold, C.; Chluba, C.; Lima de Miranda, R.; Quandt, E. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl. Phys. Lett. 2012, 101, 091903. [Google Scholar] [CrossRef]
- Uchil, J.; Mahesh, K.; Kumara, K.G. Dilatometric study of martensitic transformation in NiTiCu and NiTi shape memory alloys. J. Mater. Sci. 2001, 36, 5823–5827. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, F.; Liang, X.; Li, Z.; Jin, X.; Fukuda, T. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy. Acta Mater. 2018, 158, 330–339. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, G.; Hegab, H.; Mia, M.; Batra, N.K. Tribo-corrosion characterization of NiTiCu alloy for bio-implant applications. Mater. Res. Express 2019, 6, 096526. [Google Scholar] [CrossRef]
- Kaur, N.; Choudhary, N.; Goyal, R.N.; Viladkar, S.; Matai, I.; Gopinath, P.; Chockalingam, S.; Kaur, D. Magnetron sputtered Cu3N/NiTiCu shape memory thin film heterostructures for MEMS applications. J. Nanoparticle Res. 2013, 15, 1468. [Google Scholar] [CrossRef]
- Shchyglo, O.; Salman, U.; Finel, A. Martensitic phase transformations in Ni—Ti-based shape memory alloys: The Landau theory. Acta Mater. 2012, 60, 6784–6792. [Google Scholar] [CrossRef]
- Tanaka, Y.; Himuro, Y.; Kainuma, R.; Sutou, Y.; Omori, T.; Ishida, K. Ferrous Polycrystalline Shape-Memory Alloy Showing Huge Superelasticity. Science 2010, 327, 1488–1490. [Google Scholar] [CrossRef]
- Velmurugan, C.; Senthilkumar, V. The effect of Cu addition on the morphological, structural and mechanical characteristics of nanocrystalline NiTi shape memory alloys. J. Alloys Compd. 2018, 767, 944–954. [Google Scholar] [CrossRef]
- Ortega, A.M.; Tyber, J.; Frick, C.P.; Gall, K.; Maier, H.J. Cast NiTi Shape-Memory Alloys. Adv. Eng. Mater. 2005, 7, 492–507. [Google Scholar] [CrossRef]
- Mentz, J.; Frenzel, J.; Wagner, M.F.-X.; Neuking, K.; Eggeler, G.; Buchkremer, H.P.; Stöver, D. Powder metallurgical processing of NiTi shape memory alloys with elevated transformation temperatures. Mater. Sci. Eng. A 2008, 491, 270–278. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Speirs, M.; Van Humbeeck, J.; Kruth, J.-P. Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications. MRS Bull. 2016, 41, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Irzhak, A.; Koledov, V.; Zakharov, D.; Lebedev, G.; Mashirov, A.; Afonina, V.; Akatyeva, K.; Kalashnikov, V.; Sitnikov, N.; Tabachkova, N.; et al. Development of laminated nanocomposites on the bases of magnetic and non-magnetic shape memory alloys: Towards new tools for nanotechnology. J. Alloys Compd. 2014, 586, S464–S468. [Google Scholar] [CrossRef]
- Stoeckel, D.; Pelton, A.; Duerig, T. Self-expanding nitinol stents: Material and design considerations. Eur. Radiol. 2004, 14, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, J.; He, Y.; Wu, H.; Jiang, C.; Xu, H. Microstructure and the correlated martensitic transformation of melt spinning Ni50Mn29Ga21−xTbx (x = 0–1) ribbons. Acta Mater. 2016, 104, 91–100. [Google Scholar] [CrossRef]
- Aguilar-Ortiz, C.O.; Soto-Parra, D.; Álvarez-Alonso, P.; Lázpita, P.; Salazar, D.; Castillo-Villa, P.O.; Flores-Zúñiga, H.; Chernenko, V.A. Influence of Fe doping and magnetic field on martensitic transition in Ni–Mn–Sn melt-spun ribbons. Acta Mater. 2016, 107, 9–16. [Google Scholar] [CrossRef]
- Barmina, E.; Kosogor, A.; Khovaylo, V.; Gorshenkov, M.; Lyange, M.; Kuchin, D.; Dilmieva, E.; Koledov, V.; Shavrov, V.; Taskaev, S.; et al. Thermomechanical properties and two-way shape memory effect in melt spun Ni57Mn21Al21Si1 ribbons. J. Alloys Compd. 2017, 696, 310–314. [Google Scholar] [CrossRef]
- Diko, P.; Kavečanský, V.; Piovarči, S.; Ryba, T.; Vargova, Z.; Varga, R. Microstructure of the NiMnGa Heusler Alloys Prepared by Suction Casting and Melt-Spinning. Mater. Sci. Forum 2017, 891, 33–40. [Google Scholar] [CrossRef]
- Li, Y.Y.; Cao, S.S.; Ma, X.; Ke, C.B.; Zhang, X.P. Influence of strongly textured microstructure on the all-round shape memory effect of rapidly solidified Ni51Ti49 alloy. Mater. Sci. Eng. A 2017, 705, 273–281. [Google Scholar] [CrossRef]
- Mohri, M.; Taghizadeh, M.; Wang, D.; Hahn, H.; Nili-Ahmadabadi, M. Microstructural study and simulation of intrinsic two-way shape memory behavior of functionally graded Ni-rich/NiTiCu thin film. Mater. Charact. 2018, 135, 317–324. [Google Scholar] [CrossRef]
- Saravanan, V.; Khantachawana, A.; Miyazaki, S. Texture analysis and properties of rapidly solidified Ti52Ni38Cu10 shape memory alloy. Mater. Trans. 2004, 45, 208–213. [Google Scholar] [CrossRef]
- Lega, P.; Koledov, V.; Orlov, A.; Kuchin, D.; Frolov, A.; Shavrov, V.; Martynova, A.; Irzhak, A.; Shelyakov, A.; Sampath, V.; et al. Composite Materials Based on Shape Memory Ti2NiCu Alloy for Frontier Micro and Nanomechanical Applications. Adv. Eng. Mater. 2017, 19, 1700154. [Google Scholar] [CrossRef]
- Kalimullina, E.; Kamantsev, A.; Koledov, V.; Shavrov, V.; Nizhankovskii, V.; Irzhak, A.; Albertini, F.; Fabbrici, S.; Ranzieri, P.; Ari-Gur, P. Magnetic shape memory microactuator. Phys. Status Solidi Curr. Top. Solid State Phys. 2014, 11, 1023–1025. [Google Scholar] [CrossRef]
- Matveeva, N.M.; Bashanova, N.N.; Lovtsova, I.D. Some characteristics of shape memory effect and mechanical properties of Ti50Ni25Cu25 alloy obtained by super rapid quenching. Russ. Metall. 1993, N4, 197–199. [Google Scholar]
- Belyaev, S.P.; Istomin-Kastrovskiy, V.V.; Koledov, V.V.; Kuchin, D.S.; Resnina, N.N.; Shavrov, V.G.; Shelyakov, A.V.; Ivanov, S.E. The structure and functional properties of Ti2NiCu alloy rapidly quenched ribbons with different fractions of crystalline phase. Phy. Proc. 2010, 10, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Cullity, B.D.; Stock, S.R. Elements of X-ray Diffraction, 3rd ed.; Pearson Education: London, UK, 2014; ISBN 978-0201610918. [Google Scholar]
- Hubbell, J.H.; Seltzer, S.M. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest. Available online: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients (accessed on 19 August 2020).
- Ari-Gur, P.; Madiligama, A.S.B.; Watza, S.G.; Shelyakov, A.; Kuchin, D.; Koledov, V.; Gao, W. X-ray studies of nanostructured Ti2NiCu shape memory alloy. J. Alloys Compd. 2014, 586, S469–S471. [Google Scholar] [CrossRef]
- Santamarta, R.; Cesari, E.; Pons, J.; Goryczka, T. Shape memory properties of Ni-Ti based melt-spun ribbons. Metall. Mater. Trans. A 2004, 35, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Saburi, T.; Nakagawa, Y.; Nenno, S. Self-Accommodation Structure in the Ti-Ni-Cu Orthorhombic Martensite. J. Jpn. Inst. Met. Mater. 1990, 54, 861–869. [Google Scholar] [CrossRef] [Green Version]
- Shu, Y.; Bhattacharya, K. The influence of texture on the shape-memory effect in polycrystals. Acta Mater. 1998, 48, 5457–5473. [Google Scholar] [CrossRef] [Green Version]
- Von Gratowski, S.; Koledov, V.; Shavrov, V.; Petrenko, S.; Irzhak, A.; Shelyakov, A.; Jede, R. Advanced System for Nanofabrication and Nanomanipulation Based on Shape Memory Alloy. In Frontiers in Materials Processing, Applications, Research and Technology; Springer: Berlin, Germany, 2018; pp. 135–154. [Google Scholar]
Side of Ribbon | Plane | Bragg Angle (2θ) | Tilt Angle (χ) | Rotation Angle (φ) | Maximum Intensity (Imax) | |
---|---|---|---|---|---|---|
R60 | R96 | |||||
Air Side | B19 (022) | 59.4° | 0° | - | 1162 | 1170 |
B2 {200} | 60.7° | 0° | - | 399 | 254 | |
B19 (200) | 63.7° | 0° | - | 705 | 721 | |
B2 {110} | 42.0° | 45° | 17° | 271 | 361 | |
B19 (020) | 42.4° | 45° | 17° | 441 | 450 | |
Wheel Side | B19 (022) | 59.4° | 0° | - | 43 | 43 |
B2 {200} | 60.7° | 0° | - | 24 | 38 | |
B19 (200) | 63.7° | 0° | - | 27 | 32 | |
B2 {110} | 42.0° | 45° | 17° | 113 | 100 | |
B19 (020) | 42.4° | 45° | 17° | 89 | 111 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhale, P.; Ari-Gur, P.; Koledov, V.; Shelyakov, A. Inhomogeneity and Anisotropy in Nanostructured Melt-Spun Ti2NiCu Shape-Memory Ribbons. Materials 2020, 13, 4606. https://doi.org/10.3390/ma13204606
Bhale P, Ari-Gur P, Koledov V, Shelyakov A. Inhomogeneity and Anisotropy in Nanostructured Melt-Spun Ti2NiCu Shape-Memory Ribbons. Materials. 2020; 13(20):4606. https://doi.org/10.3390/ma13204606
Chicago/Turabian StyleBhale, Pranav, Pnina Ari-Gur, Victor Koledov, and Alexander Shelyakov. 2020. "Inhomogeneity and Anisotropy in Nanostructured Melt-Spun Ti2NiCu Shape-Memory Ribbons" Materials 13, no. 20: 4606. https://doi.org/10.3390/ma13204606
APA StyleBhale, P., Ari-Gur, P., Koledov, V., & Shelyakov, A. (2020). Inhomogeneity and Anisotropy in Nanostructured Melt-Spun Ti2NiCu Shape-Memory Ribbons. Materials, 13(20), 4606. https://doi.org/10.3390/ma13204606