Effects of Si/C Ratio on the Phase Composition of Si-C-N Powders Synthesized by Carbonitriding
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Analysis
3.2. XPS Analysis
3.3. SEM Analysis
3.4. TEM Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, L.C.; Chen, K.H.; Wei, S.L.; Kichambare, P.D.; Wu, J.J.; Lu, T.R.; Kuo, C.T. Crystalline SiCN: A hard material rivals to cubic BN. Thin Solid Films 1999, 355, 112–116. [Google Scholar] [CrossRef]
- Kroke, E.; Li, Y.L.; Konetschny, C.; Lecomte, E.; Fasel, C.; Riedel, R. Silazane derived ceramics and related materials. Mater. Sci. Eng. R 2000, 26, 97–99. [Google Scholar] [CrossRef]
- Riedel, R.; Kienzle, A.; Dressler, W.; Ruwisch, L.; Bill, J.; Aldinger, F. A silicoboron carbonitride ceramic stable to 2000 °C. Nature 1996, 382, 796–799. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Shan, X.; Wang, X.; Zhao, W. Preparation and optical properties of SiCN thin films deposited by reactive magnetron sputtering. J. Mater. Sci.-Mater. Electron. 2017, 28, 6769–6781. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Chen, C.; Zhang, G.; Xu, P.; Chen, D.; Dong, L. The photoluminescence of SiCN thin films prepared by C+ implantation into α-SiNx:H. Thin Solid Films 2010, 518, 4363–4366. [Google Scholar] [CrossRef]
- Feng, Y. Electrochemical properties of heat-treated polymer-derived SiCN anode for lithium ion batteries. Electrochem. Acta 2010, 55, 5860–5866. [Google Scholar] [CrossRef]
- Graczyk-Zajac, M.; Mera, G.; Kaspar, J.; Riedel, R. Electrochemical studies of carbon-rich polymer-derived SiCN ceramics as anode materials for lithium-ion batteries. J. Eur. Ceram. Soc. 2010, 30, 3235–3243. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Yin, X.; Ye, F.; Liu, Y.; Cheng, L. The microstructure of SiCN ceramics and their excellent electromagnetic wave absorbing properties. Ceram. Int. 2015, 41, 11372–11378. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Z.; Ishikawa, R.; Chen, L.; Liu, X.; Yin, X.; Ikuhara, Y.; Riedel, R. Single-source-precursor derived RGO/CNTs-SiCN ceramic nanocomposite with ultra-high electromagnetic shielding effectiveness. Acta Mater. 2017, 130, 83–93. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, L.; Yin, X.; Liu, X.; Liu, Y.; Xue, J.; Cheng, L. SiCN-based composite ceramics fabricated by chemical vapor infiltration with excellent mechanical and electromagnetic properties. Mater. Lett. 2013, 111, 169–172. [Google Scholar] [CrossRef]
- Nishimura, T.; Haug, R.; Bill, J.; Thurn, G.; Aldinger, F. Mechanical and thermal properties of Si-C-N material from polyvinylsilazane. J. Mater. Sci. 1998, 33, 5237–5241. [Google Scholar] [CrossRef]
- Ctvrtlik, R.; Kulikovsky, V.; Vorlicek, V.; Tomastik, J.; Drahokoupil, J.; Jastrabik, L. Mechanical properties and microstructural characterization of amorphous SiCxNy thin films after annealing beyond 1100 °C. J. Am. Ceram. Soc. 2016, 99, 996–1005. [Google Scholar] [CrossRef]
- Ctvrtlik, R.; Alhaik, M.S.; Kulikovsky, V. Mechanical properties of amorphous silicon carbonitride thin films at elevated temperatures. J. Mater. Sci. 2015, 50, 1553–1564. [Google Scholar] [CrossRef]
- Riedel, R.; Horvath-Bordon, E.; Kroll, P.; Miehe, G.; Dzivenko, D.; Kleebe, H.J.; van Aken, P.A.; Lauterbach, S. Novel binary and ternary phases in the Si-C-N system. J. Ceram. Soc. Jpn. 2008, 116, 674–680. [Google Scholar] [CrossRef]
- Dhamne, A.; Xu, W.; Fookes, B.G.; Fan, Y.; Zhang, L.; Burton, S.; Hu, J.; Ford, J.; An, L. Polymer-ceramic conversion of liquid polyaluminasilazanes for SiAlCN ceramics. J. Am. Ceram. Soc. 2010, 88, 2415–2419. [Google Scholar] [CrossRef]
- Zhao, R.; Shao, G.; Cao, Y.; An, L.; Xu, C. Temperature sensor made of polymer-derived ceramics for high-temperature applications. Sens. Actuators A Phys. 2014, 219, 58–64. [Google Scholar] [CrossRef]
- Ma, C.; Shao, G.; Jiang, J.; Liu, W.; Wang, H.; Lu, H.; Fan, B.; Li, X.; Zhang, R.; An, L. Temperature dependent AC electric conduction of polymer-derived SiAlCN ceramics. Ceram. Int. 2018, 44, 8461–8466. [Google Scholar] [CrossRef]
- Abraham, S.; Choi, E.Y.; Kang, N.; Kim, K.H. Microstructure and mechanical properties of Ti-Si-C-N films synthesized by plasma-enhanced chemical vapor deposition. Surf. Coat. Technol. 2007, 202, 915–919. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Luo, Y.; Su, S.; Zhang, Z.; Yang, S.; Gao, W.; Xie, Z. Synthesis and pyrolysis of Ti-containing precursors for advanced Si/C/N/Ti-based ceramics. J. Appl. Polym. Sci. 2010, 92, 2733–2739. [Google Scholar] [CrossRef]
- Janakiraman, N.; Weinman, M.; Schuhmacher, J.; Muller, K.; Bill, J.; Aldinger, F.; Singh, P. Thermal stability, phase evolution, and crystallization in SiBCN ceramics derived from a polyborosilazane precursor. J. Am. Ceram. Soc. 2002, 85, 1807–1814. [Google Scholar] [CrossRef]
- Lee, S.H.; Weinmann, M.; Aldinger, F. Processing and properties of C/Si-B-C-N fiber-reinforced ceramic matrix composites prepared by precursor impregnation and pyrolysis. Acta Mater. 2008, 56, 1529–1538. [Google Scholar] [CrossRef]
- Gabriel, A.O.; Riedel, R. Preparation of non-oxidic silicon ceramics by an anhydrous sol-gel process. Angew. Chem.-Int. Ed. 1997, 36, 384–386. [Google Scholar] [CrossRef]
- Lippe, K.; Wagler, J.; Kroke, E.; Herkenhoff, S.; Ischenko, V.; Woltersdorf, J. Cyclic silylcarbodiimides as precursors for porous Si/C/N materials: Formation, structures, and stabilities. Chem. Mater. 2009, 21, 3941–3949. [Google Scholar] [CrossRef]
- Volger, K.W.; Hauser, R.; Kroke, E.; Riedel, R.; Ikuhara, Y.H.; Iwamoto, Y. Synthesis and characterization of novel non-oxide sol-gel derived mesoporous amorphous Si-C-N membranes. J. Ceram. Soc. Jpn. 2006, 114, 567–570. [Google Scholar] [CrossRef]
- Jana, P.; Santoliquido, O.; Ortona, A.; Colombo, P.; Soraru, G.D. Polymer-derived SiCN cellular structures from replica of 3D printed lattices. J. Am. Ceram. Soc. 2018, 101, 2732–2738. [Google Scholar] [CrossRef]
- Saha, A.; Shah, S.; Raj, R.; Russek, S. Polymer-derived SiCN composites with magnetic properties. J. Mater. Res. 2011, 18, 2549–2551. [Google Scholar] [CrossRef]
- Chen, C.W.; Huang, C.C.; Lin, Y.Y.; Chen, L.C.; Chen, K.H. The affinity of Si-N and Si-C bonding in amorphous silicon carbon nitride (a-SiCN) thin film. Diam. Relat. Mater. 2005, 14, 1126–1130. [Google Scholar] [CrossRef]
- Peter, S.; Günther, M.; Berg, S.; Clausner, A.; Richter, F. Mid-frequency PECVD of a-SiCN:H films and their structural, mechanical and electrical properties. Vacuum 2013, 90, 155–159. [Google Scholar] [CrossRef]
- Yamamoto, K.; Koga, Y.; Fujiwara, S. XPS studies of amorphous SiCN thin films prepared by nitrogen ion-assisted pulsed-laser deposition of SiC target. Diam. Relat. Mater. 2001, 10, 1921–1926. [Google Scholar] [CrossRef]
- Xue, J.; Yin, X.W.; Ye, F.; Zhang, L.; Cheng, L. Microstructure and EMW absorption properties of CVI Si3N4-SiCN ceramics with BN interface annealed in N2 atmosphere. J. Am. Ceram. Soc. 2018, 101, 1201–1210. [Google Scholar] [CrossRef]
- Albano, M.; Delfini, A.; Pastore, R.; Micheli, D.; Marchetti, M. A new technology for production of high thickness carbon/carbon composites for launchers application. Acta Astronaut. 2016, 128, 277–285. [Google Scholar] [CrossRef]
- Wang, C.; Wang, E.; Dai, Q. First principles calculations of structural properties of β-Si3-nCnN4 (n = 0, 1, 2, 3). J. Appl. Phys. 1998, 83, 1975–1979. [Google Scholar] [CrossRef]
- Chen, C.W.; Lee, M.H.; Chen, L.C.; Chen, K.H. Structural and electronic properties of wide band gap silicon carbon nitride materials-a first-principles study. Diam. Relat. Mater. 2004, 13, 1158–1165. [Google Scholar] [CrossRef]
- Du, H.J.; Li, D.C.; He, J.L. Hardness of α- and β-Si3-nCnN4 (n=0, 1, 2, 3) crystals. Diam. Relat. Mater. 2009, 18, 72–75. [Google Scholar] [CrossRef]
- Ma, S.; Xu, B.; Wu, G.; Wang, Y.; Ma, F.; Ma, D.; Xu, K.; Bell, T. Microstructure and mechanical properties of SiCN hard films deposited by an arc enhanced magnetic sputtering hybrid system. Surf. Coat. Technol. 2008, 202, 5379–5382. [Google Scholar] [CrossRef]
- Gao, Y.; Mera, G.; Nguyen, H.; Morita, K.; Kleebe, H.J.; Riedel, R. Processing route dramatically influencing the nanostructure of carbon-rich SiCN and SiBCN polymer-derived ceramics. Part I: Low temperature thermal transformation. J. Eur. Ceram. Soc. 2012, 32, 1857–1866. [Google Scholar] [CrossRef]
- Hong, B.; Wu, X.M.; Zhuge, L.J.; Wu, Z.F.; Zhou, F. Influence of N2 proportion on mechanical properties of SiCN thin films prepared by DIBSD. Adv. Mater. Res. 2010, 97-101, 1243–1247. [Google Scholar]
- Ctvrtlik, R.; Kulikovsky, V.; Tomastik, J. Effect of nitrogen content on the mechanical properties of amorphous SiCN films. Key Eng. Mater. 2015, 662, 95–98. [Google Scholar] [CrossRef]
- Peng, Y.; Zhou, J.; Gong, J.; Yu, Q. Microstructure and optical properties of SiCN thin films deposited by reactive magnetron sputtering. Mater. Lett. 2014, 131, 148–150. [Google Scholar] [CrossRef]
- Iwamoto, Y.; Völger, W.; Kroke, E.; Riedel, R.; Saitou, T.; Matsunaga, K. Crystallization behavior of amorphous silicon carbonitride ceramics derived from organometallic precursors. J. Am. Ceram. Soc. 2001, 84, 2170–2178. [Google Scholar] [CrossRef]
- Yuan, W.; Qu, L.; Li, J.; Deng, C.; Zhu, H. Characterization of crystalline SiCN formed during the nitridation of silicon and cornstarch powder compacts. J. Alloys Compd. 2017, 725, 326–333. [Google Scholar] [CrossRef]
- Kleebe, H.J.; Suttor, D.; Muller, H.; Ziegler, G. Decomposition-crystalization of polymer-derived Si-C-N ceramics. J. Am. Ceram. Soc. 2010, 81, 2971–2977. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Yu, L.; Tong, Z.; Chen, L.; Liu, H.; Li, X. Thermal degradation and stability of starch under different processing conditions. Starch-Stärke 2013, 65, 48–60. [Google Scholar] [CrossRef]
- Smirnova, T.P.; Badalian, A.M.; Yakovkina, L.V.; Kaichev, V.V.; Bukhtiyarov, V.I.; Shmakov, A.N.; Asanov, I.P.; Rachlin, V.I.; Fomina, A.N. SiCN alloys obtained by remote plasma chemical vapour deposition from novel precursors. Thin Solid Films 2003, 429, 144–151. [Google Scholar] [CrossRef]
- Suvorova, A.A.; Rubanov, S.; Suvorov, A.V. Structural and compositional complexity of nitrogen implantation in silicon carbide. Nucl. Instrum. Method B 2012, 272, 462–465. [Google Scholar] [CrossRef]
- Li, Q.; Yin, X.W.; Duan, W.Y.; Hao, B.L.; Kong, L.; Liu, X.M. Dielectric and microwave absorption properties of polymer derived SiCN ceramics annealed in N2 atmosphere. J. Eur. Ceram. Soc. 2014, 34, 589–598. [Google Scholar] [CrossRef]
Sample | A | B | C | D | E |
---|---|---|---|---|---|
Si:C | 1.5:1 | 1:1 | 1:1.5 | 1:2 | 1:3 |
Sample | Peak Area (CPS·eV) | Relative Amount (at %) | ||||
---|---|---|---|---|---|---|
Si | C | N | Si | C | N | |
A | 2870 | 1493 | 4727 | 36.2 | 21.5 | 42.3 |
B | 15,139 | 24,409 | 5436 | 32.2 | 59.5 | 8.3 |
C | 2083 | 3394 | 1240 | 30.4 | 56.7 | 12.9 |
D | 5064 | 46,429 | 3634 | 8.3 | 87.4 | 4.3 |
E | 1438 | 52,586 | 1631 | 2.4 | 95.8 | 1.8 |
Si/C Ratio | C-Si | C-C | C-N |
---|---|---|---|
A 1.5:1 | 22.8 | 58.6 | 18.6 |
B 1:1 | 40.2 | 38.7 | 21.1 |
C 1:1.5 | 36.0 | 36.5 | 27.5 |
D 1:2 | 57.1 | 30.0 | 12.9 |
E 1:3 | 28.7 | 45.5 | 25.8 |
Si/C Ratio | N-Si | N-C | N=C |
---|---|---|---|
A 1.5:1 | 33.3 | 48.3 | 18.4 |
B 1:1 | 39.6 | 28.8 | 31.6 |
C 1:1.5 | 57.2 | 27.4 | 15.4 |
D 1:2 | 41.7 | 43.9 | 14.4 |
E 1:3 | 24.2 | 42.4 | 33.4 |
Atomic (%) | Si | C | N |
---|---|---|---|
1 | 39.0 | 49.7 | 11.3 |
2 | 50.3 | 17.1 | 32.6 |
3 | 46.4 | 32.9 | 20.7 |
4 | 44.9 | 27.8 | 27.3 |
5 | 39.0 | 50.9 | 10.1 |
6 | 56.4 | — | 43.6 |
Atomic (%) | Si | C | N |
---|---|---|---|
1 | 56.9 | 24.4 | 18.6 |
2 | 47.9 | 32.9 | 19.2 |
3 | 79.6 | 20.4 | — |
4 | 71.0 | 29.0 | — |
5 | 83.9 | — | 16.1 |
6 | 65.8 | — | 34.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Qu, L.; Yuan, W. Effects of Si/C Ratio on the Phase Composition of Si-C-N Powders Synthesized by Carbonitriding. Materials 2020, 13, 346. https://doi.org/10.3390/ma13020346
Zhang C, Qu L, Yuan W. Effects of Si/C Ratio on the Phase Composition of Si-C-N Powders Synthesized by Carbonitriding. Materials. 2020; 13(2):346. https://doi.org/10.3390/ma13020346
Chicago/Turabian StyleZhang, Cong, Ling Qu, and Wenjie Yuan. 2020. "Effects of Si/C Ratio on the Phase Composition of Si-C-N Powders Synthesized by Carbonitriding" Materials 13, no. 2: 346. https://doi.org/10.3390/ma13020346
APA StyleZhang, C., Qu, L., & Yuan, W. (2020). Effects of Si/C Ratio on the Phase Composition of Si-C-N Powders Synthesized by Carbonitriding. Materials, 13(2), 346. https://doi.org/10.3390/ma13020346