Preparation and Corrosion Behavior in Marine Environment of MAO Coatings on Magnesium Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ding, W.J. Science and Technology of Magnesium Alloy; Science Press: Beijing, China, 2007; pp. 1–10. (In Chinese) [Google Scholar]
- Yi, A.H.; Du, J.; Wang, J.; Mu, S.L.; Zhang, G.G.; Li, W.F. Preparation and characterization of colored Ti/Zr conversion coating on AZ91D magnesium alloy. Surf. Coat. Technol. 2015, 276, 239–247. [Google Scholar] [CrossRef]
- Li, O.; Tsunakawa, M.; Shimada, Y.; Nakamura, K.; Nishinaka, K.; Ishizaki, T. Corrosion resistance of composite oxide film prepared on Ca-added flame-resistant magnesium alloy AZCa612 by micro-arc oxidation. Corros. Sci. 2017, 125, 99–105. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Zeng, R.C.; Liu, C.L.; Gao, J.C. Comparison of calcium phosphatecoatings on Mg-Al and Mg-Ca alloys and their corrosion behavior in Hank’s solution, Surf. Coat. Technol. 2010, 204, 3636–3640. [Google Scholar]
- Cui, Z.Y.; Ge, F.; Lin, Y.; Wang, L.W.; Lei, L.; Tian, H.Y.; Yu, M.D.; Wang, X. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate. Electrochim. Acta 2018, 278, 421–437. [Google Scholar] [CrossRef]
- Sadeghi, A.; Hasanpur, E.; Bahmani, A.; Shin, K.S. Corrosion behaviour of AZ31 magnesium alloy containing various levels of strontium. Corros. Sci. 2018, 141, 117–126. [Google Scholar] [CrossRef]
- Qu, Q.; Li, S.L.; Li, L.; Zuo, L.M.; Ran, X.; Qu, Y.; Zhu, B.L. Adsorption and corrosion behaviour of Ttrichoderma harzianum for AZ31B magnesium alloy in artificial seawater. Corros. Sci. 2017, 118, 12–23. [Google Scholar] [CrossRef]
- Arthanari, S.; Shin, K.S. A simple one step cerium conversion coating formation on to magnesium alloy and electrochemical corrosion performance. Surf. Coat. Technol. 2018, 349, 757–772. [Google Scholar] [CrossRef]
- Wu, L.; Yang, D.N.; Zhang, G.; Zhang, Z.; Zhang, S.; Tang, A.T.; Pan, F.S. Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31. Appl. Surf. Sci. 2018, 431, 177–186. [Google Scholar] [CrossRef]
- Zhang, R.F.; Zhang, S.F. Formation of micro-arc oxidation coatings on AZ91HP magnesium alloys. Corros. Sci. 2009, 51, 2820–2825. [Google Scholar] [CrossRef]
- Yang, W.; Xu, D.P.; Wang, J.L.; Yao, X.F.; Chen, J. Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy. Corros. Sci. 2018, 136, 174–179. [Google Scholar] [CrossRef]
- Yamauchi, N.; Ueda, N.; Okamoto, A.; Sone, T.; Tsujikawa, M.; Oki, S. DLC coating on Mg-Li alloy. Surf. Coat. Technol. 2007, 201, 4913–4918. [Google Scholar] [CrossRef]
- Yang, W.; Gao, Y.; Guo, P.; Xu, D.P.; Wang, A.Y. Adhesion, biological corrosion resistance and biotribological properties of carbon films deposited on MAO coated Ti substrates. J. Mech. Behav. Biomed. 2020, 101, 103448. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.J.; Jiang, B.L.; Liu, Z.; Ge, Y.F.; Wang, Y.M. Preparation and catalytic properties of Cu2O-CoO/Al2O3 composite coating prepared on aluminum plate by microarc oxidation. Ceram. Int. 2014, 40, 9981–9987. [Google Scholar] [CrossRef]
- Durdu, S.; Usta, M. Characterization and mechanical properties of coatings on magnesium by micro arc oxidation. Appl. Surf. Sci. 2012, 261, 774–782. [Google Scholar] [CrossRef]
- Guo, H.F.; An, M.Z.; Huo, H.B.; Xu, S.; Wu, L.J. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Appl. Surf. Sci. 2006, 252, 7911–7916. [Google Scholar] [CrossRef]
- Gao, Y.H.; Li, W.F.; Du, J.; Zhang, Q.L.; Jie, J. Preparation and micro-structures of yellow ceramic coating by micro-arc oxidation. J. Mater. Sci. Eng. 2005, 23, 542–545. (In Chinese) [Google Scholar]
- Yan, F.Y.; Fan, S.Y.; Zhang, W.Q.; Zhang, Y.H. Preparation of green micro-arc oxidation ceramic coating on magnesium alloy. Mater. Prot. 2008, 41, 4–6. (In Chinese) [Google Scholar]
- Han, J.X.; Cheng, Y.L.; Tu, W.B.; Zhan, T.Y.; Cheng, Y.L. The black and white coatings on Ti-6Al-4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte. Appl. Surf. Sci. 2018, 428, 684–697. [Google Scholar] [CrossRef]
- Tu, W.B.; Cheng, Y.L.; Wang, X.Y.; Zhan, T.Y.; Han, J.X.; Cheng, Y.L. Plasma electrolytic oxidation of AZ31 magnesium alloy in aluminate-tungstate electrolytes and the coating formation mechanism. J. Alloy. Compd. 2017, 25, 199–216. [Google Scholar] [CrossRef]
- Li, J.M.; Cai, H.; Jiang, B.L. Growth mechanism of black ceramic layers formed by micro arc oxidation. Surf. Coat. Technol. 2007, 201, 8702–8708. [Google Scholar] [CrossRef]
- Yang, W.; Xu, D.P.; Chen, J.; Liu, J.N.; Jiang, B.L. Characterization of self-sealing MAO ceramic coatings with green or black color on an Al alloy. RSC Adv. 2017, 7, 1597–1605. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.L.; Xu, D.P.; Li, J.H.; Chen, T. Characterization and formation mechanism of grey micro-arc oxidation coatings on magnesium alloy. Surf. Coat. Technol. 2015, 283, 281–285. [Google Scholar] [CrossRef]
- Yang, W.; Xu, D.P.; Yao, X.F.; Wang, J.L.; Chen, J. Stable preparation and characterization of yellow micro arc oxidation coating on magnesium alloy. J. Alloy. Compd. 2018, 745, 609–616. [Google Scholar] [CrossRef]
- Lee, S.J.; Do, L.H.T. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy. Surf. Coat. Technol. 2016, 307, 781–789. [Google Scholar] [CrossRef]
- Li, Q.B.; Yang, W.B.; Liu, C.C.; Wang, D.A.; Liang, J. Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes. Surf. Coat. Technol. 2017, 316, 162–170. [Google Scholar] [CrossRef]
- Chen, W.W.; Wang, Z.X.; Sun, L.; Lu, S. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode. J. Magn. Alloy. 2015, 3, 253–257. [Google Scholar] [CrossRef]
- Yang, W.; Xu, D.P.; Guo, Q.Q.; Chen, T.; Chen, J. Influence of electrolyte composition on microstructure and properties of coatings formed on pure Ti substrate by micro arc oxidation. Surf. Coat. Technol. 2018, 349, 522–528. [Google Scholar] [CrossRef]
- Tao, X.J.; Li, S.J.; Zheng, C.Y.; Fu, J.; Guo, Z.; Hao, Y.L.; Yang, R.; Guo, Z.X. Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation. Mat. Sci. Eng. C Mater. 2009, 29, 1923–1934. [Google Scholar] [CrossRef]
- Veys-Renaux, D.; Barchiche, C.E.; Rocca, E. Corrosion behavior of AZ91 Mg alloy anodized by low-energy micro-arc oxidation: Effect of aluminates and silicates. Surf. Coat. Technol. 2014, 251, 232–238. [Google Scholar] [CrossRef]
- Shokouhfar, M.; Allahkaram, S.R. Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles. Surf. Coat. Technol. 2016, 291, 396–405. [Google Scholar] [CrossRef]
- Yan, W.G.; Jiang, B.L.; Li, H.T.; Shi, W.Y. Exfoliation of ceramic layers formed by micro-arc oxidation under cathode environment. Hot Working Technol. 2017, 46, 158–161. [Google Scholar]
- Shen, Y.; Wang, H.X.; Pan, Y.P. Effect of current density on the microstructure and corrosion properties of MAO coatings on aluminum alloy shock absorber. Key Eng. Mater. 2018, 764, 28–38. [Google Scholar] [CrossRef]
Chemical Reagents | Concentration (g/L) |
---|---|
NaCl | 24.53 |
MgCl2·6H2O | 11.11 |
Na2SO4 | 4.09 |
CaCl2 | 1.16 |
KCl | 0.70 |
NaHCO3 | 0.20 |
KBr | 0.10 |
Coatings | C | O | F | Na | Mg | Si | Zn | Cu | P |
---|---|---|---|---|---|---|---|---|---|
MAO | 1.84 | 49.64 | 3.63 | 0.46 | 33.98 | 9.78 | 0.67 | - | - |
MAO–Cu2CO3(OH)2·H2O | 2.95 | 48.18 | 3.76 | 0.86 | 35.28 | 8.05 | 0.39 | 0.53 | - |
MAO–Cu2P2O7 | 2.35 | 49.42 | 4.45 | 0.21 | 32.42 | 7.27 | 1.17 | 0.74 | 2.81 |
Oxidation Time | C | O | F | Mg | Si | Cu | Zn |
---|---|---|---|---|---|---|---|
70 s—I | 2.92 | 45.97 | 4.45 | 36.30 | 7.73 | 0.26 | 2.37 |
70 s—II | 2.05 | 29.67 | 2.77 | 60.81 | 2.45 | - | 1.76 |
100 s | 1.04 | 49.26 | 5.97 | 34.99 | 7.71 | 0.28 | 0.75 |
120 s | 1.00 | 52.41 | 5.80 | 32.41 | 7.65 | 0.28 | 0.45 |
180 s | 1.80 | 50.68 | 4.55 | 34.28 | 8.16 | 0.12 | 0.40 |
Coatings | O | Mg | Zn | Cu | Si | F | Cl | K | Ca |
---|---|---|---|---|---|---|---|---|---|
MAO | 48.03 | 29.17 | 1.66 | - | 5.72 | 7.05 | 0.35 | 0.26 | 0.81 |
MAO–Cu2CO3(OH)2·H2O | 35.25 | 38.13 | 2.02 | - | 4.07 | 5.92 | 0.41 | - | - |
MAO–Cu2P2O7 | 57.89 | 27.09 | 0.82 | 1.04 | 6.30 | - | 0.59 | - | 0.55 |
Regions | O | Mg | Si | F | Cl | Ca |
---|---|---|---|---|---|---|
Region I | 47.08 | 30.15 | 5.72 | 7.05 | - | - |
Region II | 60.47 | 25.42 | 2.37 | - | 0.73 | 2.57 |
Region III | 71.34 | 0.61 | - | - | - | 22.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Yang, W.; Liu, D.; Gao, W.; Chen, J. Preparation and Corrosion Behavior in Marine Environment of MAO Coatings on Magnesium Alloy. Materials 2020, 13, 345. https://doi.org/10.3390/ma13020345
Yao Y, Yang W, Liu D, Gao W, Chen J. Preparation and Corrosion Behavior in Marine Environment of MAO Coatings on Magnesium Alloy. Materials. 2020; 13(2):345. https://doi.org/10.3390/ma13020345
Chicago/Turabian StyleYao, Yuhong, Wei Yang, Dongjie Liu, Wei Gao, and Jian Chen. 2020. "Preparation and Corrosion Behavior in Marine Environment of MAO Coatings on Magnesium Alloy" Materials 13, no. 2: 345. https://doi.org/10.3390/ma13020345
APA StyleYao, Y., Yang, W., Liu, D., Gao, W., & Chen, J. (2020). Preparation and Corrosion Behavior in Marine Environment of MAO Coatings on Magnesium Alloy. Materials, 13(2), 345. https://doi.org/10.3390/ma13020345