Molecular Coverage Determines Sliding Wear Behavior of n-Octadecylphosphonic Acid Functionalized Cu–O Coated Steel Disks against Aluminum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Surface Characterization
2.3. Tribology Testing
3. Results and Discussion
3.1. Surface Characterization
3.2. Tribology
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newberry, P.E. El Bersheh: The Tomb of Tehuti-Hetep; Egypt Exploration Society: London, UK, 1895. [Google Scholar]
- Fall, A.; Weber, B.; Pakpour, M.; Lenoir, N.; Shahidzadeh, N.; Fiscina, J.; Wagner, C.; Bonn, D. Sliding friction on wet and dry sand. Phys. Rev. Lett. 2014, 112, 175502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowson, D. History of Tribology; Longman: London, UK, 1979; ISBN 9780582447660. [Google Scholar]
- Davison, C.S.C. Wear-prevention between 25 B.C. and 1700 A.D. Wear 1958, 2, 59–63. [Google Scholar] [CrossRef]
- Hardy, W.B.; Doubleday, I. Boundary lubrication. The paraffin series. Proc. R. Soc. A 1922, 100, 550–574. [Google Scholar] [CrossRef]
- Bowden, F.P.; Tabor, D. The Friction and Lubrication of Solids; Oxford University Press: Oxford, UK, 2001; ISBN 9780198507772. [Google Scholar]
- Loehlé, S.; Matta, C.; Minfray, C.; Mogne, T.L.; Iovine, R.; Obara, Y.; Miyamoto, A.; Martin, J.M. Mixed lubrication of steel by C18 fatty acids revisited. Part I: Toward the formation of carboxylate. Tribol. Int. 2015, 82, 218–227. [Google Scholar] [CrossRef]
- Bowden, F.P.; Gregory, J.N.; Tabor, D. Lubrication of metal surfaces by fatty acids. Nature 1945, 156, 97–101. [Google Scholar] [CrossRef]
- Dorgham, A.; Parsaeian, P.; Azam, A.; Wang, C.; Morina, A.; Neville, A. Single-asperity study of the reaction kinetics of P-based triboreactive films. Tribol. Int. 2019, 133, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Spikes, H. The history and mechanisms of ZDDP. Tribol. Lett. 2004, 17, 469–489. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol. Int. 2019, 135, 389–396. [Google Scholar] [CrossRef]
- Shirgaokar, M.; Ngaile, G. Near-net shape forging and new developments. In Cold and Hot Forging: Fundamentals and Applications; Altan, T., Ngaile, G., Shen, G., Eds.; ASM International: Materials Park, OH, USA, 2004; pp. 319–335. ISBN 0-87170-805-1. [Google Scholar]
- Schey, J.A. (Ed.) Metal Deformation Processes: Friction and Lubrication; Marcel Dekker: New York, NY, USA, 1970. [Google Scholar]
- Bay, N. The state of the art in cold forging lubrication. J. Mater. Process. Tech. 1994, 46, 19–40. [Google Scholar] [CrossRef]
- Vollertsen, F.; Schmidt, F. Dry metal forming: Definition, chances and challenges. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Fontalvo, G.A.; Humer, R.; Mitterer, C.; Sammt, K.; Schemmel, I. Microstructural aspects determining the adhesive wear of tool steels. Wear 2006, 260, 1028–1034. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E.; Kilpi, L.; Hakala, T.J.; Metsäjoki, J.; Ronkainen, H. Insights into the behaviour of tool steel-aluminium alloy tribopair at different temperatures. Tribol. Int. 2018, 119, 567–584. [Google Scholar] [CrossRef]
- Pujante, J.; Pelcastre, L.; Vilaseca, M.; Casellas, D.; Prakash, B. Investigations into wear and galling mechanism of aluminium alloy-tool steel tribopair at different temperatures. Wear 2013, 308, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Heinrichs, J.; Olsson, M.; Jacobson, S. Mechanisms of material transfer studied in situ in the SEM. Wear 2012, 292–293, 49–60. [Google Scholar] [CrossRef]
- Heinrichs, J.; Olsson, M.; Jacobson, S. Initiation of galling in metal forming: Differences between aluminium and austenitic stainless steel studied in situ in the SEM. Tribol. Lett. 2013, 50, 431–438. [Google Scholar] [CrossRef]
- Fuentes, G.G.; Díaz de Cerio, M.J.; Rodriguez, R.; Avelar-Batista, J.C.; Spain, E.; Housden, J.; Qin, Y. Investigation on the sliding of aluminium thin foils against PVD-coated carbide forming-tools during micro-forming. J. Mater. Process. Tech. 2006, 177, 644–648. [Google Scholar] [CrossRef]
- Prünte, S.; Music, D.; Schneider, J.M.; Teller, M.; Hirt, G.; Mutin, P.H.; Ramanath, G. Decreasing friction during Al cold forming using a nanomolecular layer. J. Vac. Sci. Technol. A 2017, 35, 20605. [Google Scholar] [CrossRef]
- Gao, J.; Luedtke, W.D.; Landman, U. Nano-elastohydrodynamics: Structure, dynamics, and flow in nonuniform lubricated junctions. Science 1995, 270, 605–608. [Google Scholar] [CrossRef]
- Bhushan, B. Self-assembled monolayers for controlling hydrophobicity and/or friction and wear. In Modern Tribology Handbook, Two Volume Set; Bhushan, B., Ed.; CRC Press: Hoboken, NJ, USA, 2000; pp. 909–930. ISBN 9780849377877. [Google Scholar]
- Zhang, J.; Meng, Y. Boundary lubrication by adsorption film. Friction 2015, 3, 115–147. [Google Scholar] [CrossRef] [Green Version]
- Hoque, E.; DeRose, J.A.; Bhushan, B.; Hipps, K.W. Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces. Ultramicroscopy 2009, 109, 1015–1022. [Google Scholar] [CrossRef]
- Lio, A.; Charych, D.H.; Salmeron, M. Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B 1997, 101, 3800–3805. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Y.; Zhang, Q.; Wang, Z.; Xu, Z.; Liu, C.; Zhang, J. Enhanced tribology durability of a self-assembled monolayer of alkylphosphonic acid on a textured copper substrate. Appl. Surf. Sci. 2012, 259, 147–152. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, J.; Charych, D.H.; Salmeron, M. Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy. Langmuir 1996, 12, 235–237. [Google Scholar] [CrossRef]
- Teller, M.; Prünte, S.; Ross, I.; Temmler, A.; Schneider, J.M.; Hirt, G. Tribological investigations of the applicability of surface functionalization for dry extrusion processes. AIP Conf. Proc. 2017, 1896, 140001. [Google Scholar] [CrossRef]
- Raman, A.; Quinones, R.; Barriger, L.; Eastman, R.; Parsi, A.; Gawalt, E.S. Understanding organic film behavior on alloy and metal oxides. Langmuir 2010, 26, 1747–1754. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, G.; Alauzun, J.G.; Granier, M.; Laurencin, D.; Mutin, P.H. Phosphonate coupling molecules for the control of surface/interface properties and the synthesis of nanomaterials. Dalton Trans. 2013, 42, 12569–12585. [Google Scholar] [CrossRef]
- Van Alsten John, G. Self-assembled monolayers on engineering metals: Structure, derivatization, and utility. Langmuir 1999, 15, 7605–7614. [Google Scholar] [CrossRef]
- Mutin, P.H.; Guerrero, G.; Vioux, A. Hybrid materials from organophosphorus coupling molecules. J. Mater. Chem. 2005, 15, 3761. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Tong, X.; Zhou, G. Enhancing dissociative adsorption of water on Cu(111) via chemisorbed oxygen. J. Phys. Chem. C 2017, 121, 12117–12126. [Google Scholar] [CrossRef]
- Cox, D.F.; Schulz, K.H. H2O adsorption on Cu2O(100). Surf. Sci. 1991, 256, 67–76. [Google Scholar] [CrossRef]
- Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J.M. Venting temperature determines surface chemistry of magnetron sputtered TiN films. Appl. Phys. Lett. 2016, 108, 41603. [Google Scholar] [CrossRef] [Green Version]
- Hannah, S.; Cardona, J.; Lamprou, D.A.; Šutta, P.; Baran, P.; Ruzaiqi, A.; Johnston, K.; Gleskova, H. Interplay between vacuum-grown monolayers of alkylphosphonic acids and the performance of organic transistors based on dinaphtho2,3-b:2’,3’-fthieno3,2-bthiophene. ACS Appl. Mater. Interfaces 2016, 8, 25405–25414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swift, P. Adventitious carbon—The panacea for energy referencing? Surf. Interface Anal. 1982, 4, 47–51. [Google Scholar] [CrossRef]
- Wagner, C.D.; Davis, L.E.; Zeller, M.V.; Taylor, J.A.; Raymond, R.H.; Gale, L.H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 1981, 3, 211–225. [Google Scholar] [CrossRef]
- Fontalvo, G.A.; Daniel, R.; Mitterer, C. Interlayer thickness influence on the tribological response of bi-layer coatings. Tribol. Int. 2010, 43, 108–112. [Google Scholar] [CrossRef]
- Jantschner, O.; Field, S.K.; Music, D.; Terziyska, V.L.; Schneider, J.M.; Munnik, F.; Zorn, K.; Mitterer, C. Sputtered Si-containing low-friction carbon coatings for elevated temperatures. Tribol. Int. 2014, 77, 15–23. [Google Scholar] [CrossRef]
- Teller, M.; Bambach, M.; Hirt, G. A compression-torsion-wear-test achieving contact pressures of up to eight times the initial flow stress of soft aluminium. CIRP Ann.-Manuf. Technol. 2015, 64, 289–292. [Google Scholar] [CrossRef]
- Bay, N.; Azushima, A.; Groche, P.; Ishibashi, I.; Merklein, M.; Morishita, M.; Nakamura, T.; Schmid, S.; Yoshida, M. Environmentally benign tribo-systems for metal forming. CIRP Ann.-Manuf. Technol. 2010, 59, 760–780. [Google Scholar] [CrossRef] [Green Version]
- Gouzman, I.; Dubey, M.; Carolus, M.D.; Schwartz, J.; Bernasek, S.L. Monolayer vs. multilayer self-assembled alkylphosphonate films: X-ray photoelectron spectroscopy studies. Surf. Sci. 2006, 600, 773–781. [Google Scholar] [CrossRef]
- Adolphi, B.; Jähne, E.; Busch, G.; Cai, X. Characterization of the adsorption of omega-(thiophene-3-yl alkyl) phosphonic acid on metal oxides with AR-XPS. Anal. Bioanal. Chem. 2004, 379, 646–652. [Google Scholar] [CrossRef]
- Gawalt, E.S.; Lu, G.; Bernasek, S.L.; Schwartz, J. Enhanced bonding of alkanephosphonic acids to oxidized titanium using surface-bound alkoxyzirconium complex interfaces. Langmuir 1999, 15, 8929–8933. [Google Scholar] [CrossRef]
- Carniato, S.; Dufour, G.; Luo, Y.; Ågren, H. Ab initio study of the Cu 2p and 3s core-level XPS spectra of copper phthalocyanine. Phys. Rev. B 2002, 66, 18. [Google Scholar] [CrossRef]
Sample | In (at.%) | O (at.%) | C (at.%) | P (at.%) | Cu (at.%) | (P/Cu) (%) |
---|---|---|---|---|---|---|
C18PA reactant on indium foil | 0.6 | 16.8 | 78.9 | 3.8 | – | – |
Non-functionalized Cu–O | – | 34.2 | 27.6 | – | 38.2 | – |
5 min C18PA evaporation | – | 30.1 | 31.6 | 1.1 | 37.1 | 3.0 |
36 min C18PA evaporation | – | 18.1 | 47.6 | 1.5 | 32.8 | 4.6 |
45 min C18PA evaporation | – | 23.3 | 49.1 | 1.9 | 25.7 | 7.3 |
Sample | Δm (g) | Wear Track Width (µm) |
---|---|---|
Unmodified steel disk | 0.00 ± 0.01 | 95 ± 5 |
Non-functionalized | −0.07 ± 0.01 | 281 ± 1 |
[P/Cu] = 3.0% | −0.03 ± 0.01 | 125 ± 5 |
[P/Cu] = 4.6% | −0.02 ± 0.01 | 84 ± 3 |
[P/Cu] = 7.3% | 0.00 ± 0.01 | No track established |
Disk Surface | Fe (at. %) | Cu (at. %) | O (at. %) | Al (at. %) |
---|---|---|---|---|
Unmodified steel disk | 90.6 | – | 9.4 | – |
Non-functionalized Cu–O reference | 54.2 | 38.1 | 7.7 | – |
[P/Cu] = 3.0% | 39.4 | 55.0 | 5.6 | – |
[P/Cu] = 4.6% | 42.3 | 52.2 | 5.5 | – |
[P/Cu] = 7.3% | 25.5 | 72.4 | 2.1 | – |
Al-ball against | ||||
Unmodified steel disk | 4.3 | - | 30.7 | 65.0 |
Non-functionalized Cu–O reference | 1.9 | 4.0 | 27.2 | 66.9 |
[P/Cu] = 3.0% | 1.0 | 2.4 | 22.0 | 74.6 |
[P/Cu] = 4.6% | 0.4 | 1.7 | 26.6 | 71.3 |
[P/Cu] = 7.3% | 0.0 | 6.2 | 19.0 | 74.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prünte, S.; Music, D.; Terziyska, V.L.; Mitterer, C.; Schneider, J.M. Molecular Coverage Determines Sliding Wear Behavior of n-Octadecylphosphonic Acid Functionalized Cu–O Coated Steel Disks against Aluminum. Materials 2020, 13, 280. https://doi.org/10.3390/ma13020280
Prünte S, Music D, Terziyska VL, Mitterer C, Schneider JM. Molecular Coverage Determines Sliding Wear Behavior of n-Octadecylphosphonic Acid Functionalized Cu–O Coated Steel Disks against Aluminum. Materials. 2020; 13(2):280. https://doi.org/10.3390/ma13020280
Chicago/Turabian StylePrünte, Stephan, Denis Music, Velislava L. Terziyska, Christian Mitterer, and Jochen M. Schneider. 2020. "Molecular Coverage Determines Sliding Wear Behavior of n-Octadecylphosphonic Acid Functionalized Cu–O Coated Steel Disks against Aluminum" Materials 13, no. 2: 280. https://doi.org/10.3390/ma13020280
APA StylePrünte, S., Music, D., Terziyska, V. L., Mitterer, C., & Schneider, J. M. (2020). Molecular Coverage Determines Sliding Wear Behavior of n-Octadecylphosphonic Acid Functionalized Cu–O Coated Steel Disks against Aluminum. Materials, 13(2), 280. https://doi.org/10.3390/ma13020280