Transformation of Ammonium Azide at High Pressure and Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Theoretical Methods
2.3. High P-T Transformation of AA in N
2.3.1. Raman Experiments
2.3.2. XRD Experiments
2.4. Transformation of Pure AA
2.4.1. Raman Experiments
2.4.2. XRD Experiments
3. Discussion
3.1. Comparison of Phases A and B
3.2. Comparison with Predicted NH Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
P | Pressure |
T | Temperature |
HEDM | High energy-density material |
AA | Ammonium azide |
FWHM | Full width at half maximum |
DFT | Density functional theory |
DFPT | Density functional perturbation theory |
References
- Eremets, M.; Gavriliuk, A.; Trojan, I.; Dzivenko, D.; Boehler, R. Single-Bonded Cubic Form of Nitrogen. Nat. Mater. 2004, 3, 558. [Google Scholar] [CrossRef] [PubMed]
- Lipp, M.; Klepeis, J.; Baer, B.; Cynn, H.; Evans, W.; Iota, V.; Yoo, C. Transformation of Molecular Nitrogen to Nonmolecular Phases at Megabar Pressures by Direct Laser Heating. Phys. Rev. B 2007, 76, 14113. [Google Scholar] [CrossRef]
- Goncharov, A.; Holtgrewe, N.; Qian, G.; Hu, C.; Oganov, A.; Somayazulu, M.; Stavrou, E.; Pickard, C.; Berlie, A.; Yen, F. Backbone NxH Compounds at High Pressures. J. Chem. Phys. 2015, 142, 214308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, G.R.; Niu, H.; Hu, C.H.; Oganov, A.; Zeng, Q.; Zhou, H.Y. Diverse Chemistry of Stable Hydronitrogens, and Implications for Planetary and Materials Sciences. Sci. Rep. 2016, 6, 25947. [Google Scholar] [CrossRef] [Green Version]
- Batyrev, I.G. Modeling of Extended N-H Solids at High Pressures. J. Phys. Chem. A 2017, 121, 638–647. [Google Scholar] [CrossRef]
- Wang, H.; Eremets, M.I.; Troyan, I.; Liu, H.; Ma, Y.; Vereecken, L. Nitrogen Backbone Oligomers. Sci. Rep. 2015, 5, 13239. [Google Scholar] [CrossRef]
- Yu, H.; Duan, D.; Tian, F.; Liu, H.; Li, D.; Huang, X.; Liu, Y.; Liu, B.; Cui, T. Polymerization of Nitrogen in Ammonium Azide at High Pressures. J. Phys. Chem. C 2015, 119, 25268–25272. [Google Scholar] [CrossRef]
- Spaulding, D.K.; Weck, G.; Loubeyre, P.; Datchi, F.; Dumas, P.; Hanfland, M. Pressure-Induced Chemistry in a Nitrogen-Hydrogen Host-Guest Structure. Nat. Commun. 2014, 5, 5739. [Google Scholar] [CrossRef]
- Laniel, D.; Svitlyk, V.; Weck, G.; Loubeyre, P. Pressure-induced chemical reactions in the N2(H2)2 compound: From the N2 and H2 species to ammonia and back down into hydrazine. Phys. Chem. Chem. Phys. 2018, 20, 4050–4057. [Google Scholar] [CrossRef]
- Turnbull, R.; Donnelly, M.E.; Wang, M.; Peña-Alvarez, M.; Ji, C.; Dalladay-Simpson, P.; kwang Mao, H.; Gregoryanz, E.; Howie, R.T. Reactivity of Hydrogen-Helium and Hydrogen-Nitrogen Mixtures at High Pressures. Phys. Rev. Lett. 2018, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, A.; Zhang, F. A Hydronitrogen Solid: High Pressure Ab Initio Evolutionary Structure Searches. J. Phys. Condens. Matter 2010, 23, 22203. [Google Scholar] [CrossRef] [PubMed]
- Crowhurst, J.C.; Zaug, J.M.; Radousky, H.B.; Steele, B.A.; Landerville, A.C.; Oleynik, I.I. Ammonium Azide under High Pressure: A Combined Theoretical and Experimental Study. J. Phys. Chem. A 2014, 118, 8695–8700. [Google Scholar] [CrossRef] [PubMed]
- Yedukondalu, N.; Vaitheeswaran, G.; Anees, P.; Valsakumar, M.C. Phase stability and lattice dynamics of ammonium azide under hydrostatic compression. Phys. Chem. Chem. Phys. 2015, 17, 29210–29225. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhang, H.; Ninet, S.; Zhu, H.; Liu, C.; Itié, J.P.; Gao, C.; Datchi, F. Crystal Structure and Stability of Ammonium Azide Under High Pressure. J. Phys. Chem. C 2020, 124, 135–142. [Google Scholar] [CrossRef]
- Steele, B.A.; Oleynik, I.I. Pentazole and Ammonium Pentazolate: Crystalline Hydro-Nitrogens at High Pressure. J. Phys. Chem. A 2017, 121, 1808–1813. [Google Scholar] [CrossRef] [Green Version]
- Steele, B.A.; Stavrou, E.; Crowhurst, J.C.; Zaug, J.M.; Prakapenka, V.B.; Oleynik, I.I. High-Pressure Synthesis of a Pentazolate Salt. Chem. Mater. 2017, 29, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Laniel, D.; Weck, G.; Gaiffe, G.; Garbarino, G.; Loubeyre, P. High-Pressure Synthesized Lithium Pentazolate Compound Metastable under Ambient Conditions. J. Phys. Chem. Lett. 2018, 9, 1600–1604. [Google Scholar] [CrossRef]
- Frierson, W.J.; Browne, A.W. Preparation of Ammonium Trinitride from Dry Mixtures of Sodium Trinitride and an Ammonium Salt. J. Am. Chem. Soc. 1934, 56, 2384. [Google Scholar] [CrossRef]
- Letoullec, R.; Pinceaux, J.P.; Loubeyre, P. The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations. Int. J. High Press. Res. 1988, 1, 77–90. [Google Scholar] [CrossRef]
- Dewaele, A.; Torrent, M.; Loubeyre, P.; Mezouar, M. Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations. Phys. Rev. B 2008, 78, 104102. [Google Scholar] [CrossRef]
- Datchi, F.; Dewaele, A.; Loubeyre, P.; Letoullec, R.; Godec, Y.L.; Canny, B. Optical pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell. High Press. Res. 2007, 27, 447–463. [Google Scholar] [CrossRef]
- Takemura, K.; Dewaele, A. Isothermal equation of state for gold with a He-pressure medium. Phys. Rev. B 2008, 78, 104119. [Google Scholar] [CrossRef]
- Olijnyk, H. High pressure X-ray diffraction studies on solid N2 up to 43.9 GPa. J. Chem. Phys. 1990, 93, 8968–8972. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys 2001, 73, 515. [Google Scholar] [CrossRef] [Green Version]
- Refson, K.; Tulip, P.; Clark, S. Variational Density-Functional Perturbation Theory for Dielectrics and Lattice Dynamics. Phys. Rev. B 2006, 73, 155114. [Google Scholar] [CrossRef] [Green Version]
- Segall, M.; Lindan, P.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Tkatchenko, A.; Scheffler, M. Accurate Molecular van der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 73005. [Google Scholar] [CrossRef] [Green Version]
- Ninet, S.; Datchi, F. High pressure–high temperature phase diagram of ammonia. J. Chem. Phys. 2008, 128, 154508. [Google Scholar] [CrossRef]
- Queyroux, J.A.; Ninet, S.; Weck, G.; Garbarino, G.; Plisson, T.; Mezouar, M.; Datchi, F. Melting curve and chemical stability of ammonia at high pressure: Combined X-ray diffraction and Raman study. Phys. Rev. B 2019, 99. [Google Scholar] [CrossRef]
- Olijnyk, H.; Jephcoat, A.P. Vibrational Dynamics of Isotopically Dilute Nitrogen to 104 GPa. Phys. Rev. Lett. 1999, 83, 332. [Google Scholar] [CrossRef]
- Ninet, S. Propriétés Structurales et Vibrationnelles de la Glace D’ammoniac Sous Pression. Ph.D. Thesis, University of Toulouse, Paris, France, 2006. [Google Scholar]
- Ninet, S.; Datchi, F.; Saitta, A.M.; Lazzeri, M.; Canny, B. Raman spectrum of ammonia IV. Phys. Rev. B 2006, 74, 104101. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Huang, X.; Duan, D.; Zheng, S.; Li, F.; Yang, X.; Zhou, Q.; Liu, B.; Cui, T. Hydrogen Bond in Compressed Solid Hydrazine. J. Phys. Chem. C 2014, 118, 3236–3243. [Google Scholar] [CrossRef]
- Datchi, F.; Ninet, S.; Gauthier, M.; Saitta, A.M.; Canny, B.; Decremps, F. Solid ammonia at high pressure: A single-crystal X-ray diffraction study to123GPa. Phys. Rev. B 2006, 73, 174111. [Google Scholar] [CrossRef] [Green Version]
- Boultif, A.; Louër, D. Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 2004, 37, 724–731. [Google Scholar] [CrossRef]
- Greschner, M.J.; Zhang, M.; Majumdar, A.; Liu, H.; Peng, F.; Tse, J.S.; Yao, Y. A New Allotrope of Nitrogen as High-Energy Density Material. J. Phys. Chem. A 2016, 120, 2920–2925. [Google Scholar] [CrossRef]
- Hirshberg, B.; Gerber, R.B.; Krylov, A.I. Calculations predict a stable molecular crystal of N8. Nat. Chem. 2013, 6, 52–56. [Google Scholar] [CrossRef]
- Evers, J.; Göbel, M.; Krumm, B.; Martin, F.; Medvedyev, S.; Oehlinger, G.; Steemann, F.X.; Troyan, I.; Klapötke, T.M.; Eremets, M.I. Molecular Structure of Hydrazoic Acid with Hydrogen-Bonded Tetramers in Nearly Planar Layers. J. Am. Chem. Soc. 2011, 133, 12100–12105. [Google Scholar] [CrossRef]
- Duwal, S.; Ryu, Y.J.; Kim, M.; Yoo, C.S.; Bang, S.; Kim, K.; Hur, N.H. Transformation of hydrazinium azide to molecular N8 at 40 GPa. J. Chem. Phys. 2018, 148, 134310. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Zhang, H.; Ninet, S.; Zhu, H.; Beneut, K.; Liu, C.; Mezouar, M.; Gao, C.; Datchi, F. Transformation of Ammonium Azide at High Pressure and Temperature. Materials 2020, 13, 4102. https://doi.org/10.3390/ma13184102
Zhang G, Zhang H, Ninet S, Zhu H, Beneut K, Liu C, Mezouar M, Gao C, Datchi F. Transformation of Ammonium Azide at High Pressure and Temperature. Materials. 2020; 13(18):4102. https://doi.org/10.3390/ma13184102
Chicago/Turabian StyleZhang, Guozhao, Haiwa Zhang, Sandra Ninet, Hongyang Zhu, Keevin Beneut, Cailong Liu, Mohamed Mezouar, Chunxiao Gao, and Frédéric Datchi. 2020. "Transformation of Ammonium Azide at High Pressure and Temperature" Materials 13, no. 18: 4102. https://doi.org/10.3390/ma13184102
APA StyleZhang, G., Zhang, H., Ninet, S., Zhu, H., Beneut, K., Liu, C., Mezouar, M., Gao, C., & Datchi, F. (2020). Transformation of Ammonium Azide at High Pressure and Temperature. Materials, 13(18), 4102. https://doi.org/10.3390/ma13184102