Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = ammonium azide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3444 KiB  
Review
A Review on Liquid Pulsed Laser Propulsion
by Sai Li, Baosheng Du, Qianqian Cui, Jifei Ye, Haichao Cui, Heyan Gao, Ying Wang, Yongzan Zheng and Jianhui Han
Aerospace 2025, 12(7), 604; https://doi.org/10.3390/aerospace12070604 - 2 Jul 2025
Viewed by 525
Abstract
Laser propulsion is a new conceptual technology that drives spacecraft and possesses advantages such as high specific impulse, large payload ratio, and low launch cost. It has potential applications in diverse areas, such as space debris mitigation and removal, microsatellite attitude control, and [...] Read more.
Laser propulsion is a new conceptual technology that drives spacecraft and possesses advantages such as high specific impulse, large payload ratio, and low launch cost. It has potential applications in diverse areas, such as space debris mitigation and removal, microsatellite attitude control, and orbital maneuvering. Liquid pulse laser propulsion has notable advantages among the various laser propulsion systems. We review the concept and the theory of liquid laser propulsion. Then, we categorize the current state of research based on three types of propellants—non-energetic liquids, energetic liquids, and liquid metals—and provide an analysis of the propulsion characteristics arising from the laser ablation of liquids such as water, glycidyl azide polymer (GAP), hydroxylammonium nitrate (HAN), and ammonium dinitramide (ADN). We also discuss future research directions and challenges of pulsed liquid laser propulsion. Although experiments have yielded encouraging outcomes due to the distinctive properties of liquid propellants, continued investigation is essential to ensure that this technology performs reliably in actual aerospace applications. Consistent results under both spatial and ground conditions remain a key research content for fully realizing its potential. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology (2nd Edition))
Show Figures

Figure 1

14 pages, 9402 KiB  
Article
Molecular Dynamics Simulation of Interfacial Effects in PBT-Based Azide Propellants Under Tensile Deformation
by Hongjun Liao, Jiangyan Lv, Peng Cao, Liang Cao, Renlong Huang and Xianqiong Tang
Polymers 2025, 17(7), 885; https://doi.org/10.3390/polym17070885 - 26 Mar 2025
Viewed by 496
Abstract
The mechanical properties of PBT-based azide propellants, composed of a 3,3′-bis(azidomethyl)oxetane/tetrahydrofuran (PBT) copolymer matrix and defective ammonium perchlorate (AP) crystals, are significantly influenced by the matrix–crystal interface. This study employed molecular dynamics (MD) simulations to examine interfacial effects on mechanical performance under uniaxial [...] Read more.
The mechanical properties of PBT-based azide propellants, composed of a 3,3′-bis(azidomethyl)oxetane/tetrahydrofuran (PBT) copolymer matrix and defective ammonium perchlorate (AP) crystals, are significantly influenced by the matrix–crystal interface. This study employed molecular dynamics (MD) simulations to examine interfacial effects on mechanical performance under uniaxial tensile deformation. Models with varying cross-linking densities (70%, 80%, 90%) and AP defect widths (20 Å, 30 Å, 40 Å) were analyzed to assess the effects of temperature, strain rate, cross-linking degree, and defect size on interfacial adhesion strength and failure mechanisms. Results indicate that at low temperatures, the interface exhibited high stress peaks and brittleness characteristics, transitioning to plastic flow and enhanced ductility at higher temperatures. Cross-linking density significantly affects interfacial strength: a 90% cross-linking degree achieved the highest stress peak and optimal tensile resistance, whereas lower cross-linking resulted in weaker stress transfer and accelerated post-peak stress decay. Higher strain rates increased peak stress and shortened deformation times, while lower strain rates promoted molecular rearrangement, enhancing tensile resistance. Defect size also plays a crucial role, with smaller defects maintaining interfacial dominance, whereas larger defects shift failure toward the bulk matrix, reducing stress transfer efficiency. These findings provide atomic-scale insights into interfacial defects and key material parameters, offering theoretical guidance for optimizing the structural stability of composite propellants. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

13 pages, 4597 KiB  
Article
Analysis of Interfacial Adhesion Properties Between PBT Azide Propellant Matrix and Defective AP Fillers Using Molecular Dynamics Simulations
by Xianzhen Jia, Linjing Tang, Ruipeng Liu, Hongjun Liao, Liang Cao, Xianqiong Tang and Peng Cao
Polymers 2024, 16(24), 3497; https://doi.org/10.3390/polym16243497 - 15 Dec 2024
Cited by 4 | Viewed by 1104
Abstract
Filler defects and matrix crosslinking degree are the main factors affecting the interfacial adhesion properties of propellants. Improving adhesion can significantly enhance debonding resistance. In this study, all-atom molecular dynamics (MD) simulations are employed to investigate the interfacial adsorption behavior and mechanisms between [...] Read more.
Filler defects and matrix crosslinking degree are the main factors affecting the interfacial adhesion properties of propellants. Improving adhesion can significantly enhance debonding resistance. In this study, all-atom molecular dynamics (MD) simulations are employed to investigate the interfacial adsorption behavior and mechanisms between ammonium perchlorate (AP) fillers and a poly(3,3-bis-azidomethyl oxetane)-tetrahydrofuran (PBT) matrix. This study focuses on matrix crosslinking degree (70–90%), AP defects (width 20–40 Å), and temperature effects (200–1000 K) to analyze microscopic interfacial adsorption behavior, binding energy, and radial distribution function (RDF). The simulation results indicate that higher crosslinking of the PBT matrix enhances interfacial adsorption strength, but incomplete crosslinking reduces this strength. Defects on the AP surface affect interfacial adsorption by altering the contact area, and defects of 30 Å width can enhance adsorption. The analysis of temperature effects on binding energy and interface RDF reveals that binding energy and interface RDF fluctuate as the temperature increases. This study provides a microscopic perspective on the PBT matrix–AP interfacial adsorption mechanism and provides insights into the design of PBT azide propellant fuels. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

1310 KiB  
Proceeding Paper
Synthesis of New Aza-Heterocyclic Based on 2-Pyridone
by Ikram Baba-Ahmed, Zahira Kibou, Julio A. Seijas, Noureddine Choukchou-Braham and M. Pilar Vázquez-Tato
Chem. Proc. 2024, 16(1), 113; https://doi.org/10.3390/ecsoc-28-20134 - 14 Nov 2024
Viewed by 339
Abstract
In this work, we present new methods of synthesis of different molecules including a 2-pyridone nucleus. First, we prepared a series of 1H-free 2-pyridones and N-alkyl 2-pyridones from ethyl cyanoacetate, aromatic aldehydes, various acetophenone derivatives and ammonium acetate or diamino-alkane. [...] Read more.
In this work, we present new methods of synthesis of different molecules including a 2-pyridone nucleus. First, we prepared a series of 1H-free 2-pyridones and N-alkyl 2-pyridones from ethyl cyanoacetate, aromatic aldehydes, various acetophenone derivatives and ammonium acetate or diamino-alkane. These molecules have served as building blocks that, in conjunction with acyl chloride derivatives, glycoside derivatives, etc. have resulted in various heterocyclic hybrid structures carrying a 2-pyridone ring. Moreover, based on the cyano group reactivity of the 2-pyridone ring, we synthesized 5-pyridone 1H-tetrazole in a single step by a cycloaddition reaction [3 + 2] between 3-cyano-2-pyridone nitriles and sodium azide in the presence of metal-free L-proline. Full article
Show Figures

Scheme 1

14 pages, 4002 KiB  
Article
Water-Soluble Quaternary and Protonable Basic Chitotriazolans: Synthesis by Click Chemistry Conversion of Chitosan Azides and Investigation of Antibacterial Activity
by Sankar Rathinam, Romano Magdadaro, Martha Á. Hjálmarsdóttir and Már Másson
J. Funct. Biomater. 2024, 15(3), 63; https://doi.org/10.3390/jfb15030063 - 5 Mar 2024
Cited by 4 | Viewed by 2270
Abstract
The azide transfer reaction and copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) can be used to convert the amino groups in chitosan to triazole 1,2,3-moieties. The resulting polymer has been named chitotriazolan. This synthesis was performed with six different quaternary ammonium alkynes and three amine alkynes [...] Read more.
The azide transfer reaction and copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) can be used to convert the amino groups in chitosan to triazole 1,2,3-moieties. The resulting polymer has been named chitotriazolan. This synthesis was performed with six different quaternary ammonium alkynes and three amine alkynes to obtain a series of nine water-soluble chitotriazolan derivatives. The structure and complete conversion of the azide were confirmed by FT-IR and proton NMR spectroscopy. The derivatives were investigated for antibacterial activity against S. aureus, E. faecalis, E. coli, and P. aeruginosa. The activity of the quaternized chitotriazolan derivatives varied depending on the structure of the quaternary moiety and the species of bacteria. The basic protonable derivatives were less active or inactive against the bacteria. Full article
(This article belongs to the Special Issue Biomedical Applications of Chitin and Chitosan-II)
Show Figures

Figure 1

13 pages, 5988 KiB  
Article
Development of a Laser Micro-Thruster and On-Orbit Testing
by Jifei Ye, Sibo Wang, Hao Chang, Yanji Hong, Nanlei Li, Weijing Zhou, Baoyu Xing, Bangdeng Du and Chengyin Xie
Aerospace 2024, 11(1), 23; https://doi.org/10.3390/aerospace11010023 - 26 Dec 2023
Cited by 6 | Viewed by 2375
Abstract
Laser micro-thrust technology is a type of propulsion that uses a laser beam to ablate a propellant such as a metal or plastic. The ablated material is expelled out the back of the spacecraft, generating thrust. The technology has the advantages of high [...] Read more.
Laser micro-thrust technology is a type of propulsion that uses a laser beam to ablate a propellant such as a metal or plastic. The ablated material is expelled out the back of the spacecraft, generating thrust. The technology has the advantages of high control precision, high thrust–power ratios, and excellent performances, and it has played an important role in the field of micro-propulsion. In this study, a solid propellant laser micro-thruster was developed and then applied for the attitude control of satellites during on-orbit tests. The micro-thruster had a volume of 0.5 U, a weight of 440 g, and a thrust range of 10 μN–0.6 mN. The propellant, 87% glycidyl azide polymer (GAP) + 10% ammonium perchlorate (AP) + 3% carbon nano-powder, was supplied via a double-layer belt, and the average power was less than 10 W. We present the development of the laser micro-thruster, as well as the results regarding the thruster propulsion performance. The thruster was launched into orbit on 27 February 2022 with the Chuangxin Leishen Satellite developed by Spacety. The on-orbit test of the thruster for satellite attitude control was carried out. The thruster was successfully fired in space and played an obvious role in the attitude control of the satellite. The experimental results show that the thrust is about 315 μN. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology)
Show Figures

Figure 1

11 pages, 4959 KiB  
Article
Analytical Validation of Two Assays for Equine Ceruloplasmin Ferroxidase Activity Assessment
by Stefano Cecchini Gualandi, Tommaso Di Palma and Raffaele Boni
Vet. Sci. 2023, 10(10), 623; https://doi.org/10.3390/vetsci10100623 - 18 Oct 2023
Cited by 1 | Viewed by 2080
Abstract
Ceruloplasmin (Cp) assessment in biological samples exploits the oxidase activity of this enzyme against several substrates, such as p-phenylenediamine (p-P), o-dianisidine (o-D) and, most recently, ammonium iron(II) sulfate (AIS). Once developed in humans, these assays are often [...] Read more.
Ceruloplasmin (Cp) assessment in biological samples exploits the oxidase activity of this enzyme against several substrates, such as p-phenylenediamine (p-P), o-dianisidine (o-D) and, most recently, ammonium iron(II) sulfate (AIS). Once developed in humans, these assays are often used in veterinary medicine without appropriately optimizing in the animal species of interest. In this study, two assays using AIS and o-D as substrates have been compared and validated for Cp oxidase activity assessment in horse’s plasma. The optimization of the assays was performed mainly by varying the buffer pH as well as the buffer and the substrate molar concentration. Under the best analytical conditions obtained, the horse blood serum samples were treated with sodium azide, a potent Cp inhibitor. In the o-D assay, 500 µM sodium azide treatment completely inhibits the enzymatic activity of Cp, whereas, using the AIS assay, a residual analytical signal was still present even at the highest (2000 µM) sodium azide concentration. Even though the analytical values obtained from these methods are well correlated, the enzymatic activity values significantly differ when expressed in Units L−1. A disagreement between these assays has also been detected with the Bland–Altman plot, showing a progressive discrepancy between methods with increasing analytical values. Full article
(This article belongs to the Special Issue Assessment of Oxidant and Antioxidant Status in Livestock)
Show Figures

Figure 1

12 pages, 3973 KiB  
Article
Room-Temperature Synthesis of Tubular Hexagonal Boron Nitride under Pressure
by Junkai Li, Donghan Jia, Guoliang Niu, Peiyang Mu and Huiyang Gou
Crystals 2023, 13(8), 1201; https://doi.org/10.3390/cryst13081201 - 2 Aug 2023
Cited by 1 | Viewed by 2430
Abstract
Hexagonal boron nitride (h-BN) exhibits interesting optical and mechanical properties, including chemical and thermal stability. Extensive techniques have been applied for the realization of h-BN at high temperatures. Here, we propose a room-temperature preparation of h-BN at high pressure through the compression of [...] Read more.
Hexagonal boron nitride (h-BN) exhibits interesting optical and mechanical properties, including chemical and thermal stability. Extensive techniques have been applied for the realization of h-BN at high temperatures. Here, we propose a room-temperature preparation of h-BN at high pressure through the compression of ammonium azide and boron powder. The structure and morphology of the obtained h-BN are found to possess tubular-like features, and the selected-area electron diffraction and electron energy-loss spectroscopy support the formation of h-BN. Remarkably, h-BN grows gradually from the surface of boron particles to form a core–shell structure. This tubular morphology of h-BN with a size of 70 nanometers in length and 27 nanometers in width differs from the conventional lamellar h-BN generated with temperature assistance. Our results demonstrate a method for the room-temperature synthesis of tubular h-BN, which shows great promise for the preparation of other nitrides at high pressure and room temperature. Full article
Show Figures

Figure 1

10 pages, 4771 KiB  
Article
Traditional vs. Energetic and Perchlorate vs. “Green”: A Comparative Study of the Choice of Binders and Oxidising Agents
by Kinga Lysien, Sylwia Waśkiewicz, Agnieszka Stolarczyk, Anna Mielańczyk, Roman Zakusylo and Tomasz Jarosz
Molecules 2023, 28(15), 5787; https://doi.org/10.3390/molecules28155787 - 31 Jul 2023
Cited by 4 | Viewed by 1743
Abstract
The aim of this article is to compare rocket propellants containing a traditional binder (hydroxyl-terminated polybutadiene) and an energetic binder (glycidyl azide polymer), as well as a perchlorate oxidising agent and a “green” one, i.e., ammonium perchlorate and phase-stabilised ammonium nitrate. We have [...] Read more.
The aim of this article is to compare rocket propellants containing a traditional binder (hydroxyl-terminated polybutadiene) and an energetic binder (glycidyl azide polymer), as well as a perchlorate oxidising agent and a “green” one, i.e., ammonium perchlorate and phase-stabilised ammonium nitrate. We have outlined the effects of individual substances on the sensitivity parameters and decomposition temperature of the produced solid propellants. The linear combustion velocity was determined using electrical methods. Heats of combustion for the propellant samples and the thermal decomposition features of the utilised binders were investigated via differential scanning calorimetry (DSC). Activation energy values for the energetic decomposition of the propellants were determined via the Kissinger method, based on DSC measurements at varied heating rates. Full article
Show Figures

Graphical abstract

17 pages, 4643 KiB  
Article
High-Glass-Transition Polyesters Produced with Phthalic Anhydride and Epoxides by Ring-Opening Copolymerization (ROCOP)
by Selena Silvano, Matteo Proverbio, Adriano Vignali, Fabio Bertini and Laura Boggioni
Polymers 2023, 15(13), 2801; https://doi.org/10.3390/polym15132801 - 24 Jun 2023
Cited by 7 | Viewed by 2700
Abstract
Polyesters with a high glass transition temperature above 130 °C were obtained from limonene oxide (LO) or vinylcyclohexene oxide (VCHO) and phthalic anhydride (PA) in the presence of commercial salen-type complexes with different metals—Cr, Al, and Mn—as catalysts in combination with 4-(dimethylamino) pyridine [...] Read more.
Polyesters with a high glass transition temperature above 130 °C were obtained from limonene oxide (LO) or vinylcyclohexene oxide (VCHO) and phthalic anhydride (PA) in the presence of commercial salen-type complexes with different metals—Cr, Al, and Mn—as catalysts in combination with 4-(dimethylamino) pyridine (DMAP), bis-(triphenylphosphorydine) ammonium chloride (PPNCl), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) as cocatalysts via alternating ring-opening copolymerization (ROCOP). The effects of the time of precontact between the catalyst and cocatalyst and the polymerization time on the productivity, molar mass (Mw), and glass transition temperature (Tg) were evaluated. The polyesters were characterized by a molar mass (Mw) of up to 14.0 kg/mol, a narrow dispersity Tg of up to 136 °C, and low (<3 mol%) polyether units. For poly(LO-alt-PA) copolymers, biodegradation tests were performed according to ISO 14851 using the respirometric biochemical oxygen demand method. Moreover, the vinyl double bond present in the poly(LO-alt-PA) copolymer chain was functionalized using three different thiols, methyl-3-mercaptopropionate, isooctyl-3-mercaptopropionate, and butyl-3-mercaptopropionate, via a click chemistry reaction. The thermal properties of poly(LO-alt-PA), poly(VCHO-alt-PA) and thiol-modified poly(LO-alt-PA) copolymers were extensively studied by DSC and TGA. Some preliminary compression molding tests were also conducted. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials and Eco-Design)
Show Figures

Graphical abstract

17 pages, 11932 KiB  
Article
Nitric Oxide Induced by Ammonium/Nitrate Ratio Ameliorates Low-Light Stress in Brassica pekinesis: Regulation of Photosynthesis and Root Architecture
by Linli Hu, Xueqin Gao, Yutong Li, Jian Lyu, Xuemei Xiao, Guobin Zhang and Jihua Yu
Int. J. Mol. Sci. 2023, 24(8), 7271; https://doi.org/10.3390/ijms24087271 - 14 Apr 2023
Cited by 8 | Viewed by 2305
Abstract
Low-light intensity affects plant growth and development and, finally, causes a decrease in yield and quality. There is a need for improved cropping strategies to solve the problem. We previously demonstrated that moderate ammonium:nitrate ratio (NH4+:NO3) mitigated [...] Read more.
Low-light intensity affects plant growth and development and, finally, causes a decrease in yield and quality. There is a need for improved cropping strategies to solve the problem. We previously demonstrated that moderate ammonium:nitrate ratio (NH4+:NO3) mitigated the adverse effect caused by low-light stress, although the mechanism behind this alleviation is unclear. The hypothesis that the synthesis of nitric oxide (NO) induced by moderate NH4+:NO3 (10:90) involved in regulating photosynthesis and root architecture of Brassica pekinesis subjected to low-light intensity was proposed. To prove the hypothesis, a number of hydroponic experiments were conducted. The results showed that in plants exposed to low-light intensity, the exogenous donors NO (SNP) and NH4+:NO3 (N, 10:90) treatments significantly increased leaf area, growth range, and root fresh weight compared with nitrate treatment. However, the application of hemoglobin (Hb, NO scavenger), N-nitro-l-arginine methyl ester (L-NAME, NOS inhibitor), and sodium azide (NaN3, NR inhibitor) in N solution remarkably decreased the leaf area, canopy spread, the biomass of shoot and root, the surface area, and volume and tips of the root. The application of N solution and exogenous SNP significantly enhanced Pn (Net photosynthetic rate) and rETR (relative electron transport rates) compared with solo nitrate. While all these effects of N and SNP on photosynthesis, such as Pn, Fv/Fm (maximum quantum yield of PSII), Y(II) (actual photosynthetic efficiency), qP (photochemical quenching), and rETR were reversed when the application of Hb, L-NAME, and NaN3 in N solution. The results also showed that the N and SNP treatments were more conducive to maintaining cell morphology, chloroplast structure, and a higher degree of grana stacking of low-light treated plants. Moreover, the application of N significantly increased the NOS and NR activities, and the NO levels in the leaves and roots of mini Chinese cabbage seedlings treated with N were significantly higher than those in nitrate-treated plants. In conclusion, the results of this study showed that NO synthesis induced by the appropriate ammonia–nitrate ratio (NH4+:NO3 = 10:90) was involved in the regulation of photosynthesis and root structure of Brassica pekinesis under low-light stress, effectively alleviating low-light stress and contributing to the growth of mini Chinese cabbage under low-light stress. Full article
(This article belongs to the Special Issue Nitric Oxide Signalling and Metabolism in Plants 2023)
Show Figures

Figure 1

4 pages, 1078 KiB  
Proceeding Paper
Fe-Catalyzed Synthesis of 2-Benzoxazolone—An Important Fragment of Biologically Active Compounds
by Zemfira G. Urazbaeva, Alfiya R. Bayguzina and Ilfir R. Ramazanov
Chem. Proc. 2022, 12(1), 63; https://doi.org/10.3390/ecsoc-26-13564 - 14 Nov 2022
Viewed by 1588
Abstract
2-Benzoxazolone, as well as its derivatives, are valuable structural fragments of a number of important biologically active substances. 2-Benzoxazolone derivatives are promising as antitumor, antimicrobial, antiretroviral, anticonvulsant, tranquilizing, and insecticidal agents. 2-Benzoxazolone is usually produced by the condensation of o-aminophenol with urea, phosgene, [...] Read more.
2-Benzoxazolone, as well as its derivatives, are valuable structural fragments of a number of important biologically active substances. 2-Benzoxazolone derivatives are promising as antitumor, antimicrobial, antiretroviral, anticonvulsant, tranquilizing, and insecticidal agents. 2-Benzoxazolone is usually produced by the condensation of o-aminophenol with urea, phosgene, and other carbonic acid derivatives. There are also methods for the synthesis of 2-benzoxazolone from salicylamide with trichloroisocyanuric acid as a chlorinating agent, from hydroxybenzoic acid using ammonium azide and the Vilsmeier complex. The disadvantages of these methods are the high cost of the initial reagents, the need to use aggressive and toxic reagents (phosgene, ammonium azide), and the complexity of the hardware design for the reactors. We have developed the highly efficient oxidative cyclocarbonylation of 2-aminophenol to oxazolidin-2-one using FeCl3*6H2O and Fe(acac)3 as catalysts under relatively mild conditions (100–120 °C) in the presence of CCl4 and water. We assume that in situ-formed carbon dioxide is involved in a cyclization reaction with o-aminophenol to form the target 2-benzoxazole. The reaction takes 2–10 h to give 2-benzoxazolone a high yield. Full article
Show Figures

Figure 1

29 pages, 20082 KiB  
Article
Synthesis of a Novel Series of Cu(I) Complexes Bearing Alkylated 1,3,5-Triaza-7-phosphaadamantane as Homogeneous and Carbon-Supported Catalysts for the Synthesis of 1- and 2-Substituted-1,2,3-triazoles
by Ivy L. Librando, Abdallah G. Mahmoud, Sónia A. C. Carabineiro, M. Fátima C. Guedes da Silva, Carlos F. G. C. Geraldes and Armando J. L. Pombeiro
Nanomaterials 2021, 11(10), 2702; https://doi.org/10.3390/nano11102702 - 13 Oct 2021
Cited by 16 | Viewed by 3259
Abstract
The N-alkylation of 1,3,5-triaza-7-phosphaadamantane (PTA) with ortho-, meta- and para-substituted nitrobenzyl bromide under mild conditions afforded three hydrophilic PTA ammonium salts, which were used to obtain a new set of seven water-soluble copper(I) complexes. The new compounds were fully characterized [...] Read more.
The N-alkylation of 1,3,5-triaza-7-phosphaadamantane (PTA) with ortho-, meta- and para-substituted nitrobenzyl bromide under mild conditions afforded three hydrophilic PTA ammonium salts, which were used to obtain a new set of seven water-soluble copper(I) complexes. The new compounds were fully characterized and their catalytic activity was investigated for the low power microwave assisted one-pot azide–alkyne cycloaddition reaction in homogeneous aqueous medium to obtain disubstituted 1,2,3-triazoles. The most active catalysts were immobilized on activated carbon (AC), multi-walled carbon nanotubes (CNT), as well as surface functionalized AC and CNT, with the most efficient support being the CNT treated with nitric acid and NaOH. In the presence of the immobilized catalyst, several 1,4-disubstituted-1,2,3-triazoles were obtained from the reaction of terminal alkynes, organic halides and sodium azide in moderate yields up to 80%. Furthermore, the catalyzed reaction of terminal alkynes, formaldehyde and sodium azide afforded 2-hydroxymethyl-2H-1,2,3-triazoles in high yields up to 99%. The immobilized catalyst can be recovered and recycled through simple workup steps and reused up to five consecutive cycles without a marked loss in activity. The described catalytic systems proceed with a broad substrate scope, under microwave irradiation in aqueous medium and according to “click rules”. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

13 pages, 1493 KiB  
Article
Development of Phenalenone-Triazolium Salt Derivatives for aPDT: Synthesis and Antibacterial Screening
by Jérémy Godard, Dáire Gibbons, Stéphanie Leroy-Lhez, René M. Williams, Nicolas Villandier, Tan-Sothéa Ouk, Frédérique Brégier and Vincent Sol
Antibiotics 2021, 10(6), 626; https://doi.org/10.3390/antibiotics10060626 - 24 May 2021
Cited by 15 | Viewed by 3824
Abstract
The increasing number of hospital-acquired infections demand the development of innovative antimicrobial treatments. Antimicrobial photodynamic therapy (aPDT) is a versatile technique which relies on the production of reactive oxygen species (ROS) generated by light-irradiated photosensitizers (PS) in the presence of oxygen (O2 [...] Read more.
The increasing number of hospital-acquired infections demand the development of innovative antimicrobial treatments. Antimicrobial photodynamic therapy (aPDT) is a versatile technique which relies on the production of reactive oxygen species (ROS) generated by light-irradiated photosensitizers (PS) in the presence of oxygen (O2). 1H-Phenalen-1-one is a very efficient photosensitizer known for its high singlet oxygen quantum yield and its antimicrobial potential in aPDT when covalently bound to quaternary ammonium groups. Triazolium salts are stable aromatic quaternary ammonium salts that recently appeared as interesting moieties endowed with antimicrobial activities. The coupling between phenalenone and triazolium groups bearing various substituents was realized by copper-catalyzed azide-alkyne cycloaddition followed by alkylation with methyl iodide or 2-(bromomethyl)-1H-phenalen-1-one. As expected, most of the compounds retained the initial singlet oxygen quantum yield, close to unity. Minimum inhibitory concentrations (MIC) of 14 new phenalenone-triazolium salt derivatives and 2 phenalenone-triazole derivatives were determined against 6 bacterial strains (Gram-negatives and Gram-positives species). Most of these PS showed significant photoinactivation activities, the strongest effects being observed against Gram-positive strains with as low as submicromolar MIC values. Full article
(This article belongs to the Special Issue New and Innovative Applications of Antimicrobial Photodynamic Therapy)
Show Figures

Figure 1

11 pages, 1428 KiB  
Communication
A Facile Strategy for the High Yielding, Quantitative Conversion of Polyglycol End-Groups to Amines
by Jie Yan, Paula Facal Marina and Anton Blencowe
Polymers 2021, 13(9), 1403; https://doi.org/10.3390/polym13091403 - 26 Apr 2021
Cited by 9 | Viewed by 5109
Abstract
Amino end-group functionalised polyglycols are important intermediates in the synthesis of sophisticated polymeric architectures and biomaterials. Herein, we report a facile strategy for the end-group conversion of hydroxyl-terminated polyglycols to amino-terminated polyglycols in high isolated yields and with excellent end-group fidelity. Following traditional [...] Read more.
Amino end-group functionalised polyglycols are important intermediates in the synthesis of sophisticated polymeric architectures and biomaterials. Herein, we report a facile strategy for the end-group conversion of hydroxyl-terminated polyglycols to amino-terminated polyglycols in high isolated yields and with excellent end-group fidelity. Following traditional conversion of polyglycol hydroxyl end-groups to azides via the corresponding mesylate, reduction with zinc in the presence of ammonium chloride afforded a range of amino end-group functionalised poly(ethylene glycol) and poly(propylene glycol) homopolymers and copolymers with isolated yields of 82–99% and end-group conversions of >99% as determined by NMR spectroscopy and MALDI ToF MS. Furthermore, this process is applicable to a sequential reagent addition approach without intermediate polymer isolation steps with only a slight reduction in yield and end-group conversion (95%). Importantly, a simple work-up procedure provides access to high purity polyglycols without contamination from other reagents. Full article
(This article belongs to the Collection Design and Synthesis of Polymers)
Show Figures

Graphical abstract

Back to TopTop