Next Article in Journal
Study of Carbon Black Types in SBR Rubber: Mechanical and Vibration Damping Properties
Previous Article in Journal
Influence of Particle Size on Toughening Mechanisms of Layered Silicates in CFRP
Open AccessArticle

Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites

Unipetrol Centre for Research and Education, Revoluční 84, 400 01 Ústí nad Labem, Czech Republic
*
Author to whom correspondence should be addressed.
Materials 2020, 13(10), 2395; https://doi.org/10.3390/ma13102395
Received: 16 April 2020 / Revised: 13 May 2020 / Accepted: 20 May 2020 / Published: 22 May 2020
Metakaolinite-based geopolymer binder was prepared at room temperature by mixing calcined claystone and potassium alkaline activator. Various granular inorganic fillers were added, amounting to 65 vol % to form geopolymer composites. The effect of four types of fillers (sand quartz, chamotte, cordierite, and corundum) on the thermo-mechanical properties of metakaolinite-based geopolymer composites were investigated. The samples were also examined by an X-ray diffraction method to determine their phase composition. The pore size distributions were determined by a mercury intrusion porosimeter. The XRD revealed the crystallization of new phase (leucite) after thermal exposure at 1000 °C and higher. Geopolymer binders had low mechanical properties (flexural strength 2.5 MPa and compressive strength 45 MPa) and poor thermo-mechanical properties (especially high shrinkage—total shrinkage 9%) compared to geopolymer composites (flexural strength up to 13.8 MPa, compressive strength up to 95 MPa and total shrinkage up to 1%). The addition of fillers reduced the shrinkage of geopolymers and improved their mechanical properties. The results have shown that the compressive strength tested in situ and after exposure to high temperature are in conflict. Geopolymer composites with the addition of chamotte had the best mechanical properties before and after thermal exposure (compressive strength up to 95 MPa). The average pore size diameters increased with the increasing temperature (from 10 nm to approx. 700 nm). The fillers addition decreased the pore volume (from 250 mm3/g to approx. 100 mm3/g). View Full-Text
Keywords: geopolymer; metakaolinite; claystone; thermal properties; mechanical properties geopolymer; metakaolinite; claystone; thermal properties; mechanical properties
Show Figures

Graphical abstract

MDPI and ACS Style

Kohout, J.; Koutník, P. Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Materials 2020, 13, 2395.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop