Highly Porous Polymer-Derived Bioceramics Based on a Complex Hardystonite Solid Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation of Batches for Hardystonite Solid Solutions
2.2. Direct Ink Writing of Hardystonite Scaffolds
2.3. Preparation of Hardystonite Foams
2.4. Characterisations
3. Results
3.1. Phase Evolution
3.2. Obtainment of Scaffolds and Foams
3.3. Preliminary Cell Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernardo, E.; Fiocco, L.; Parcianello, G.; Storti, E.; Colombo, P. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review. Materials 2014, 7, 1927–1956. [Google Scholar] [CrossRef] [PubMed]
- Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. J. Am. Ceram. Soc. 2010, 93, 1805–1837. [Google Scholar] [CrossRef]
- Greil, P. Polymer Derived Engineering Ceramics. Adv. Eng. Mater. 2000, 2, 339–348. [Google Scholar] [CrossRef]
- Greil, P. Near Net Shape Manufacturing of Polymer Derived Ceramics. J. Eur. Ceram. Soc. 1998, 18, 1905–1914. [Google Scholar] [CrossRef]
- Elsayed, H.; Colombo, P. Crack-free silicate bioceramics from preceramic polymers. Adv. Appl. Ceram. 2016, 115, 193–199. [Google Scholar] [CrossRef]
- Bernardo, E.; Carlotti, J.F.; Dias, P.M.; Fiocco, L.; Colombo, P.; Treccani, L.; Hess, U.; Rezwan, K. Novel akermanite-based bioceramics from preceramic polymers and oxide fillers. Ceram. Int. 2013, 40, 1029–1035. [Google Scholar] [CrossRef]
- Fiocco, L.; Elsayed, H.; Ferroni, L.; Gardin, C.; Zavan, B.; Bernardo, E. Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers. Materials 2015, 8, 2480–2494. [Google Scholar] [CrossRef]
- Ramaswamy, Y.; Wu, C.; Zhou, H.; Zreiqat, H. Biological response of human bone cells to zinc-modified Ca–Si-based ceramics. Acta. Biomat. 2008, 4, 1487–1497. [Google Scholar] [CrossRef]
- Lu, H.; Kawazoe, N.; Tateishi, T.; Chen, G.; Jin, X.; Chang, J. In vitro proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stem cells cultured with hardystonite (Ca2ZnSi2O7) and β-TCP ceramics. J. Biomater. Appl. 2010, 25, 39–56. [Google Scholar]
- Yu, J.; Li, K.; Zheng, X.; He, D.; Ye, X.; Wang, M. In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si Based Ceramic Coating for Bone Implants. PLoS ONE 2013, 8, 8e57564. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Salinas, A.; Sanchez-Salcedo, S.; Detsch, R.; Vallet-Regi, M.; Boccaccini, A.R. Induction of VEGF secretion from bone marrow stromal cell line (ST-2) by the dissolution products of mesoporous silica glass particles containing CuO and SrO. J. Non-Cryst. Solids 2018, 500, 217–224. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Detsch, R.; Esteban-Tejeda, L.; Grünewald, A.; Moya, J.S.; Boccaccini, A.R. Influence of dissolution products of a novel Ca-enriched silicate bioactive glass-ceramic on VEGF release from bone marrow stromal cells. Biomed. Glasses 2017, 3, 104–110. [Google Scholar] [CrossRef]
- Detsch, R.; Stoor, P.; Grunewald, A.; Roether, J.A.A.; Lindfors, N.C.C.; Boccaccini, A.R. Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone. J. Biomed. Mater. Res. Part A 2014, 102, 4055–4061. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chang, J. A review of bioactive silicate ceramics. Biomed. Mater. 2013, 8, 032001. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chang, J.; Zhai, W. A novel hardystonite bioceramic: Preparation and characteristics. Ceram. Int. 2005, 31, 27–31. [Google Scholar] [CrossRef]
- Wu, C.; Ramaswamy, Y.; Chang, J.; Woods, J.; Chen, Y.; Zreiqat, H. The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 87, 346–353. [Google Scholar] [CrossRef]
- Roohani-Esfahani, S.-I.; Chen, Y.; Shi, J.; Zreiqat, H. Fabrication and characterization of a new, strong and bioactive ceramic scaffold for bone regeneration. Mater. Lett. 2013, 107, 378–381. [Google Scholar] [CrossRef]
- Roohani-Esfahani, S.-I.; Newman, P.; Zreiqat, H. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Sci. Rep. 2016, 6, 19468. [Google Scholar] [CrossRef]
- Li, J.J.; Dunstan, C.R.; Entezari, A.; Li, Q.; Steck, R.; Saifzadeh, S.; Sadeghpour, A.; Field, J.R.; Akey, A.; Vielreicher, M.; et al. A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects. Adv. Healthc. Mater. 2019, 8, 1801298. [Google Scholar] [CrossRef]
- Elsayed, H.; Zocca, A.; Franchin, G.; Bernardo, E.; Colombo, P. Hardystonite bioceramics from preceramic polymers. J. Eur. Ceram. Soc. 2015, 36, 829–835. [Google Scholar] [CrossRef]
- Zocca, A.; Franchin, G.; Elsayed, H.; Gioffredi, E.; Bernardo, E.; Colombo, P. Direct ink writing of a preceramic polymer and fillers to produce hardystonite (Ca2ZnSi2O7) bioceramic scaffolds. J. Am. Ceram. Soc. 2016, 99, 1960–1967. [Google Scholar] [CrossRef]
- Elsayed, H.; Sinico, M.; Secco, M.; Zorzi, F.; Colombo, P.; Bernardo, E. B-doped hardystonite bioceramics from preceramic polymers and fillers: Synthesis and application to foams and 3D-printed scaffolds. J. Eur. Ceram. Soc. 2017, 37, 1757–1767. [Google Scholar] [CrossRef]
- Qi, S.; Huang, Y.; Lin, Q.; Cheng, H.; Seo, H.J. A bioactive Ca2SiB2O7 ceramics and in vitro hydroxyapatite mineralization ability in SBF. Ceram. Int. 2015, 41, 12011–12019. [Google Scholar] [CrossRef]
- Elsayed, H.; Gardin, C.; Ferroni, L.; Zavan, B.; Colombo, P.; Bernardo, E. Highly Porous Sr/Mg-Doped Hardystonite Bioceramics from Preceramic Polymers and Reactive Fillers: Direct Foaming and Direct Ink Writing. Adv. Eng. Mater. 2018, 21, 1800900. [Google Scholar] [CrossRef]
- Wu, C.; Ramaswamy, Y.; Kwik, D.; Zreiqat, H. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials 2007, 28, 3171–3181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lin, K.; Chang, J. Preparation and characterization of Sr–hardystonite (Sr2ZnSi2O7) for bone repair applications. Mater. Sci. Eng. C 2012, 32, 184–188. [Google Scholar] [CrossRef]
- Zreiqat, H.; Ramaswamy, Y.; Wu, C.; Paschalidis, A.; Lu, Z.; James, B.; Birke, O.; McDonald, M.; Little, D.; Dunstan, C.R. The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials 2010, 31, 3175–3184. [Google Scholar] [CrossRef]
- Liu, N.; Fan, W.; Wu, C.; Fan, B. The interactions of Mg2+-Zn2+ containing silicate materials with stem cells and bacteria. Mater. Lett. 2013, 112, 105–108. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Büttner, T.; Miguez Pacheco, V.; Boccaccini, A.R. Boron-containing bioactive glasses in bone and soft tissue engineering. J. Eur. Ceram. Soc. 2018, 38, 855–869. [Google Scholar] [CrossRef]
- Yılmaz, B.; Evis, Z. Boron-substituted bioceramics: A review. Bor Derg. 2016, 1, 6–14. [Google Scholar]
- Balasubramanian, P.; Hupa, L.; Jokic, B.; Detsch, R.; Grünewald, A.; Boccaccini, A.R. Angiogenic potential of boron-containing bioactiveglasses: In vitro study. J. Mater. Sci. 2017, 52, 8785–8792. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Durand, L.A.H.; Vargas, G.E.; Romero, N.M.; Vera-Mesones, R.; Porto-López, J.M.; Boccaccini, A.R.; Zago, M.P.; Baldi, A.; Gorustovich, A. Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J. Mater. Chem. B 2015, 3, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
- Miola, M.; Verné, E.; Ciraldo, F.E.; Cordero-Arias, L.; Boccaccini, A.R. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr. Front. Bioeng. Biotechnol. 2015, 3, 159. [Google Scholar]
- Seryotkin, Y.V.; Sokol, E.V.; Kokh, S.N. Natural pseudowollastonite: Crystal structure, associated minerals, and geological context. Lithos 2012, 134, 75–90. [Google Scholar] [CrossRef]
- No, Y.J.; Li, J.J.; Zreiqat, H. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes. Materials 2017, 10, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [Green Version]
- Baino, F.; Novajra, G.; Vitale-Brovarone, C. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Front. Bioeng. Biotechnol. 2015, 3, 202. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, H.; Hafezi, M.; Nezafati, N.; Heasarki, S.; Nadernezhad, A.; Ghazanfari, S.M.H.; Sepantafa, M. Bioinorganics in Bioactive Calcium Silicate Ceramics for Bone TissueRepair: Bioactivity and Biological Properties. J. Ceram. Sci. Technol. 2014, 5, 1–12. [Google Scholar]
- Rahaman, M.N.; Day, D.E.; Bal, B.S.; Fu, Q.; Jung, S.B.; Bonewald, L.F.; Tomsia, A.P. Bioactive glass in tissue engineering. Acta Biomater. 2001, 7, 2355–2373. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, A.; Güldal, N.S.; Boccaccini, A.R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, L.-C.; Widdows, K.L.; Erol, M.M.; Burch, C.W.; Sanz-Herrera, J.A.; Ochoa, I.; Stämpfli, R.; Roqan, I.S.; Gabe, S.; Ansari, T.; et al. The pro-angiogenic properties of multi-functional bioactiveglass composite scaffolds. Biomaterials 2011, 32, 4096–4108. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Chemical Formula | Batch Formulation for 100 g Ceramic Yield | |||||
---|---|---|---|---|---|---|---|
MK Silicone (g) | CaCO3 (g) | ZnO (g) | Colemanite (Ca2B6O11) (g) | SrCO3 (g) | MgO (g) | ||
X15 | Ca1.7Sr0.3Zn0.75B0.5Si1.75O7 | 42.3 | 51.93 | 20.6 | 9.1 | 14.99 | 0 |
X30 | Ca1.4Sr0.6Zn0.75B0.5Si1.75O7 | 42.3 | 41.76 | 20.6 | 9.1 | 29.99 | 0 |
Y15 | Ca2Zn0.64Mg0.11B0.5Si1.75O7 | 42.3 | 62.1 | 17.51 | 9.1 | 0 | 1.53 |
Y30 | Ca2Zn0.53Mg0.22B0.5Si1.75O7 | 42.3 | 62.1 | 14.42 | 9.1 | 0 | 3.06 |
X30Y15 | Ca1.4Sr0.6Zn0.64Mg0.11B0.5Si1.75O7 | 42.3 | 41.76 | 17.52 | 9.1 | 29.99 | 1.53 |
X30Y30 | Ca1.4Sr0.6Zn0.53Mg0.22B0.5Si1.75O7 | 42.3 | 41.76 | 14.42 | 9.1 | 29.99 | 3.06 |
Silica Precursor Type | Batch Formulation for 100 g Ceramic Yield | |||||
---|---|---|---|---|---|---|
Silica Precursor (g) | CaCO3 (g) | ZnO (g) | Colemanite (g) | SrCO3 (g) | MgO (g) | |
H62C | 63.4 | 41.76 | 17.52 | 9.1 | 29.99 | 1.53 |
Colloidal silica | 35.5 | 41.76 | 17.52 | 9.1 | 29.99 | 1.53 |
Quartz sand | 35.5 | 41.76 | 17.52 | 9.1 | 29.99 | 1.53 |
Oxide | SiO2 | CaO | SrO | ZnO | MgO | B2O3 |
---|---|---|---|---|---|---|
wt% | 34.07 ± 0.21 | 24.00 ± 0.34 | 18.82 ± 0.44 | 17.98 ± 0.20 | 1.88 ± 0.06 | 3.24 ± 0.24 |
ATOM | WYCKOFF | S.O.F. | X | Y | Z | Biso |
---|---|---|---|---|---|---|
O1 | 8f | 1.000000 | 0.3145(2) | 0.5777(1) | 0.2073(2) | 0.500000 |
O2 | 4e | 1.000000 | 0.1401(2) | 0.6401(2) | 0.7461(2) | 0.500000 |
O3 | 2c | 1.000000 | 0.000000 | 0.500000 | 0.1607(4) | 0.500000 |
Si1 | 2a | 0.130000 | 0.000000 | 0.000000 | 0.000000 | 0.500000 |
Zn | 2a | 0.718765 | 0.000000 | 0.000000 | 0.000000 | 0.500000 |
Mg | 2a | 0.150000 | 0.000000 | 0.000000 | 0.000000 | 0.500000 |
Sr | 4e | 0.2995(8) | 0.666(8) | 0.166(8) | 0.4943(2) | 0.500000 |
Ca | 4e | 0.7005(8) | 0.666(8) | 0.166(8) | 0.494200 | 0.500000 |
B | 8f | 0.150(2) | 0.141(3) | 0.639(3) | 0.0592(1) | 0.500000 |
Si2 | 8f | 0.850(2) | 0.141(3) | 0.639(3) | 0.0592(1) | 0.500000 |
Sample Type | - | Bulk Density (g/cm3) | Total Porosity (vol%) | Open Porosity (vol%) | Compressive Strength (MPa) |
---|---|---|---|---|---|
Scaffolds | 800 * | 1.38 ± 0.01 | 56 ± 2 | 56 ± 2 | 4.6 ± 0.5 |
1600 * | 0.90 ± 0.05 | 71 ± 1 | 71 ± 1 | 1.6 ± 0.2 | |
Foams | - | 0.60 ± 0.02 | 82 ± 1 | 82 ± 1 | 1.5 ± 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsayed, H.; Secco, M.; Zorzi, F.; Schuhladen, K.; Detsch, R.; Boccaccini, A.R.; Bernardo, E. Highly Porous Polymer-Derived Bioceramics Based on a Complex Hardystonite Solid Solution. Materials 2019, 12, 3970. https://doi.org/10.3390/ma12233970
Elsayed H, Secco M, Zorzi F, Schuhladen K, Detsch R, Boccaccini AR, Bernardo E. Highly Porous Polymer-Derived Bioceramics Based on a Complex Hardystonite Solid Solution. Materials. 2019; 12(23):3970. https://doi.org/10.3390/ma12233970
Chicago/Turabian StyleElsayed, Hamada, Michele Secco, Federico Zorzi, Katharina Schuhladen, Rainer Detsch, Aldo R. Boccaccini, and Enrico Bernardo. 2019. "Highly Porous Polymer-Derived Bioceramics Based on a Complex Hardystonite Solid Solution" Materials 12, no. 23: 3970. https://doi.org/10.3390/ma12233970