Revealing the Nuclei Formation in Carbon-Inoculated Mg-3%Al Alloys Containing Trace Fe
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Grain Refining Efficiency
3.2. Observation of Nucleating Particles
4. Discussion
4.1. Grain Refinement Mechanism
4.2. Formation Process of Duplex-Phase and Al4C3 Cluster Particles
4.3. Establishment of the Thermodynamic Model
4.4. Calculation Results from Thermodynamic Model
4.5. The Role of Ca Solute in Carbon Inoculated Mg-3%Al Alloy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Z.L. Review of grain refinement of cast metals through inoculation: Theories and developments. Metall. Mater. Trans. A 2017, 48, 4755–4776. [Google Scholar] [CrossRef]
- Easton, M.A.; Qian, M.; Prasad, A.; StJohn, D.H. Recent advances in grain refinement of light metals and alloys. Curr. Opin. Solid State Mater. Sci. 2016, 20, 13–24. [Google Scholar] [CrossRef]
- Du, J.; Yang, J.; Kuwabara, M.; Li, W.; Peng, J. Effects of Carbon and/or Alkaline Earth Elements on Grain Refinement and Tensile Strength of AZ31 Alloy. Mater. Trans. 2008, 49, 2303–2309. [Google Scholar] [CrossRef]
- Qiu, D.; Zhang, M.X.; Taylor, J.A.; Fu, H.M.; Kelly, P.M. A novel approach to the mechanism for the grain refining effect of melt superheating of Mg–Al alloys. Acta Mater. 2007, 55, 1863–1871. [Google Scholar] [CrossRef]
- Han, G.; Liu, X. Phase control and formation mechanism of Al–Mn(–Fe) intermetallic particles in Mg–Al-based alloys with FeCl3 addition or melt superheating. Acta Mater. 2016, 114, 54–66. [Google Scholar] [CrossRef]
- Li, C.; Wen, C.; Du, J.; Li, W.; Zhan, M. Inoculant fading-resistance of Fe-bearing Mg–3%Al alloys refined by carbon combining with calcium addition. Mater. Trans. 2018, 59, 1878–1886. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Liu, X.T.; Hao, H. Effect of Al4C3 Particle Size Distribution in a Al–2.5C Master Alloy on the Refining Efficiency of the AZ31 Alloy. Acta Metall. Sin. (Engl. Lett.) 2017, 30, 505–512. [Google Scholar] [CrossRef]
- Du, J.; Yao, Z.; Han, S.; Li, W. Discussion on grain refining mechanism of AM30 alloy inoculated by MgCO3. J. Magnes. Alloy. 2017, 5, 181–188. [Google Scholar] [CrossRef]
- Du, Y.Z.; Qiao, X.G.; Zheng, M.Y.; Wang, D.B.; Wu, K.; Golovin, I.S. Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass%Zn alloys. Mater. Des. 2016, 98, 285–293. [Google Scholar] [CrossRef]
- Zuo, Y.B.; Fu, X.; Mou, D.; Zhu, Q.F.; Li, L.; Cui, J.Z. Study on the role of Ca in the grain refinement of Mg–Ca binary alloys. Mater. Res. Innov. 2015, 19. [Google Scholar] [CrossRef]
- Nagasivamuni, B.; Ravi, K.R. An analytical approach to elucidate the mechanism of grain refinement in calcium added Mg–Al alloys. J. Alloys Compd. 2015, 622, 789–795. [Google Scholar] [CrossRef]
- Zhang, S.; Song, J.; Liao, H.; Liu, Y.; Zhang, G.; Ma, S.; Tang, A.; Atrens, A.; Pan, F. Effect of Boron on the Grain Refinement and Mechanical Properties of as-Cast Mg Alloy AM50. Materials 2019, 12, 1100. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, C.; Zheng, T.; Pan, F.; Tang, A. Strengthening Effects of Zn Addition on an Ultrahigh Ductility Mg-Gd-Zr Magnesium Alloy. Materials 2018, 11, 1942. [Google Scholar] [CrossRef]
- Orbulov, I.N.; Németh, Á.; Dobránszky, J. XRD and EDS investigations of metal matrix composites and syntactic foams. In Proceedings of the 13th European Conference on X-ray Septrometry, Cavtat, Croatia, 16–20 June 2018. [Google Scholar]
- Svensson, I.L.; Millberg, A.; Diószegi, A. A study of eutectic inoculation in grey iron by addition of Fe-Si-Ca-Al-, Sr, Ba, Zr, Ti, RE and C. Int. J. Cast Met. Res. 2016, 16, 29–34. [Google Scholar] [CrossRef]
- Fredriksson, H. Inoculation of iron-base alloys. Mater. Sci. Eng. 1984, 65, 137–144. [Google Scholar] [CrossRef]
- Romanowicz, P.J.; Szybinski, B. Fatigue Life Assessment of Rolling Bearings Made from AISI 52100 Bearing Steel. Materials 2019, 12, 371. [Google Scholar] [CrossRef]
- Yosuke Tamura, T.H.; Yano, E.; Motegi, T.; Kono, N.; Sato, E. Grain Refinement of High-Purity Mg–Al Alloy Ingots and Influences of Minor Amounts of Iron and Manganese on Cast Grain Size. Mater. Trans. 2002, 43, 2784–2788. [Google Scholar] [CrossRef][Green Version]
- Pan, Y.C.; Liu, X.F.; Yang, H. Role of C and Fe in grain refinement of an AZ63B magnesium alloy by Al-C master alloy. J. Mater. Sci. Technol. 2005, 21, 822–826. [Google Scholar]
- Du, J.; Yang, J.; Kuwabara, M.; Li, W.; Peng, J. Effect of Iron and/or Carbon on the Grain Refinement of Mg3Al Alloy. Mater. Trans. 2007, 48, 2903–2908. [Google Scholar] [CrossRef]
- Hua, M.; Wang, J.D. Influence of Trace Fe on Fading of Mg-3%Al Alloy Inoculated by Carbon. J. Mater. Eng. 2016, 44, 54–58. [Google Scholar]
- Martinez Krahmer, D.; Hameed, S.; Sánchez Egea, A.J.; Pérez, D.; Canales, J.; López de Lacalle, L.N. Wear and MnS Layer Adhesion in Uncoated Cutting Tools When Dry and Wet Turning Free-Cutting Steels. Metals 2019, 9, 556. [Google Scholar] [CrossRef]
- Fernández-Abia, A.I.; Barreiro, J.; López de Lacalle, L.N.; Martínez-Pellitero, S. Behavior of austenitic stainless steels at high speed turning using specific force coefficients. Int. J. Adv. Manuf. Technol. 2012, 62, 505–515. [Google Scholar] [CrossRef]
- Du, J.; Wang, H.L.; Zhou, M.C.; Li, W.F. Poisoning-free effect of calcium on grain refinement of Mg–3%Al alloy containing trace Fe by carbon inoculation. Trans. Nonferrous Met. Soc. China 2013, 23, 307–314. [Google Scholar] [CrossRef]
- Du, J.; Yang, J.; Kuwabara, M.; Li, W.; Peng, J. Improvement of grain refining efficiency for Mg–Al alloy modified by the combination of carbon and calcium. J. Alloys Compd. 2009, 470, 134–140. [Google Scholar] [CrossRef]
- Du, J.; Shi, Y.; Zhou, M.; Li, W. Effect of Sr on Grain Refinement of Mg–3%Al Alloy Containing Trace Fe by Carbon-Inoculation. J. Mater. Sci. Technol. 2016, 32, 1297–1302. [Google Scholar] [CrossRef]
- Du, J.; Wang, M.; Li, W. Effects of Fe addition and addition sequence on carbon inoculation of Mg–3%Al alloy. J. Alloys Compd. 2010, 502, 74–79. [Google Scholar] [CrossRef]
- Han, G.; Liu, X. Duplex nucleation in Mg–Al–Zn–Mn alloys with carbon inoculation. J. Alloys Compd. 2009, 487, 194–197. [Google Scholar] [CrossRef]
- Suárez, A.; López de Lacalle, L.N.; Polvorosa, R.; Veiga, F.; Wretland, A. Effects of high-pressure cooling on the wear patterns on turning inserts used on alloy IN718. Mater. Manuf. Process. 2016, 32, 678–686. [Google Scholar] [CrossRef]
- Ma, Z.; Li, C.; Du, J.; Zhan, M. Grain Refinement of Mg–Al Alloys Inoculated by MgO Powder. Int. J. Met. 2018, 13, 674–685. [Google Scholar] [CrossRef]
- Huang, Y.; Kainer, K.U.; Hort, N. Mechanism of grain refinement of Mg-Al alloys by SiC inoculation. Scr. Mater. 2011, 64, 793–796. [Google Scholar] [CrossRef]
- Qian, M.; Cao, P. Discussions on grain refinement of magnesium alloys by carbon inoculation. Scr. Mater. 2005, 52, 415–419. [Google Scholar] [CrossRef]
- Franke, P. Binary Systems. Part 1 Elements and Binary Systems from Ag-Al to Au-Tl; Springer: Berlin/Heidelberg, Germany, 2002; pp. 122–124. [Google Scholar] [CrossRef]
- Lee, Y.C.; Dahle, A.K.; StJohn, D.H. The role of solute in grain refinement of magnesium. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2000, 31, 2895–2906. [Google Scholar] [CrossRef]
- Zhang, M.X.; Kelly, P.M.; Qian, M.; Taylor, J.A. Crystallography of grain refinement in Mg–Al based alloys. Acta Mater. 2005, 53, 3261–3270. [Google Scholar] [CrossRef]
- Greer, A.L.; Bunn, A.M.; Tronche, A.; Evans, P.V.; Bristow, D.J. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al–Ti–B. Acta Mater. 2000, 48, 2823–2835. [Google Scholar] [CrossRef]
- Du, J.; Wang, M.; Zhou, M.; Li, W. Evolutions of grain size and nucleating particles in carbon-inoculated Mg–3% Al alloy. J. Alloys Compd. 2014, 592, 313–318. [Google Scholar] [CrossRef]
- Verlinden, B.; Driver, J.; Samajdar, I.; Doherty, R.D. Thermo-Mechanical Processing of Metallic Materials; Elsevier: Amsterdam, The Netherland, 2007; Volume 11. [Google Scholar]
- Pan, J.; Ni, J.; Yang, B. Stability of FeAl (110) alloy surface structures: A first-principles study. Eur. Phys. J. B 2010, 73, 367–373. [Google Scholar] [CrossRef]
- Li, K.; Sun, Z.G.; Wang, F.; Zhou, N.G.; Hu, X.W. First-principles calculations on Mg/Al4C3 interfaces. Appl. Surf. Sci. 2013, 270, 584–589. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yang, S.; Luo, G.; Liao, H.; Du, J. Revealing the Nuclei Formation in Carbon-Inoculated Mg-3%Al Alloys Containing Trace Fe. Materials 2019, 12, 2478. https://doi.org/10.3390/ma12152478
Li C, Yang S, Luo G, Liao H, Du J. Revealing the Nuclei Formation in Carbon-Inoculated Mg-3%Al Alloys Containing Trace Fe. Materials. 2019; 12(15):2478. https://doi.org/10.3390/ma12152478
Chicago/Turabian StyleLi, Chengbo, Shuqing Yang, Gan Luo, Hengbin Liao, and Jun Du. 2019. "Revealing the Nuclei Formation in Carbon-Inoculated Mg-3%Al Alloys Containing Trace Fe" Materials 12, no. 15: 2478. https://doi.org/10.3390/ma12152478
APA StyleLi, C., Yang, S., Luo, G., Liao, H., & Du, J. (2019). Revealing the Nuclei Formation in Carbon-Inoculated Mg-3%Al Alloys Containing Trace Fe. Materials, 12(15), 2478. https://doi.org/10.3390/ma12152478