Abstract
Refuse-derived fuel (RDF) presents a viable strategy to concurrently address the challenges of municipal solid waste management and the need for alternative energy. In this context, the present review systematically synthesizes recent advances in RDF preparation, combustion behavior, and efficient utilization technologies. The study examines the full chain of RDF production—including waste selection, mechanical/optical/magnetic sorting, granulation, briquetting, and chemical modification—highlighting how pretreatment technologies influence fuel homogeneity, calorific value, and emissions. The thermochemical conversion characteristics of RDF are systematically analyzed, covering the mechanism differences among slow pyrolysis, fast pyrolysis, flash pyrolysis, pyrolysis mechanisms, catalytic pyrolysis, fragmentation behavior, volatile release patterns, and kinetic modeling using Arrhenius and model-free isoconversional methods (e.g., FWO). Special attention is given to co-firing and high-efficiency combustion technologies, including ultra-supercritical boilers, circulating fluidized beds, and rotary kilns, where fuel quality, ash fusion behavior, slagging, bed agglomeration, and particulate emissions determine operational compatibility. Integrating recent findings, this review identifies the key technical bottlenecks—feedstock variability, chlorine/sulfur release, heavy-metal contaminants, ash-related issues, and the need for standardized RDF quality control. Emerging solutions such as AI-assisted sorting, catalytic upgrading, optimized co-firing strategies, and advanced thermal conversion systems (oxy-fuel, chemical looping, supercritical steam cycles) are discussed within the broader context of carbon reduction and circular economy transitions. Overall, RDF represents a scalable, flexible, and high-value waste-to-energy pathway, and the review provides insights into future research directions, system optimization, and policy frameworks required to support its industrial deployment.