You are currently on the new version of our website. Access the old version .
EnergiesEnergies
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Perspective
  • Open Access

27 January 2026

Augmenting Offshore Wind-Farm Yield with Tethered Kites

,
,
and
Department of Mechanical Engineering, University of Malta, 2080 Msida, Malta
*
Author to whom correspondence should be addressed.
This article belongs to the Section A3: Wind, Wave and Tidal Energy

Abstract

Offshore wind-farm performance remains constrained by persistent wake deficits and turbulence that compound across intra-farm, intra-cluster, and inter-cluster scales, particularly under atmospheric neutral–stable stratification. A concept is advanced whereby offshore wind-farm yield may be augmented by pairing conventional horizontal-axis wind turbines (HAWTs) with lighter-than-air parafoil systems that entrain higher-momentum air and re-energise wakes, complementing yaw/induction-based wake control and enabling higher array energy density. A concise synthesis of wake physics and associated challenges motivates opportunities for active momentum re-injection, while a review of kite technologies frames design choices for lift generation and spatial keeping. Stability and control, spanning static and dynamic behaviours, tether dynamics, and response to extreme meteorological conditions, are identified as key challenges. System-integration pathways are outlined, including alignment and mounting options relative to turbine rows and prevailing shear. A staged validation programme is proposed, combining high-fidelity numerical simulation with wave-tank testing of coupled mooring–tether dynamics and wind-tunnel experiments on scaled arrays. Evaluation metrics emphasise net energy gain, fatigue loading, availability, and Levelized Cost of Energy (LCOE). The paper concludes with research directions and recommendations to guide standards and investment, and with a quantitative assessment of the techno-economic significance of kite–HAWT integration at scale.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.