Performance Optimized Infrared Shading Elements for Traditional Buildings
Abstract
1. Introduction
2. Materials and Methods
- (a)
- Center field: Planked with a 12 mm oriented strand board (OSB) panel (Egger, St. Johann, Austria), extending from the foot purlin to 50 cm below the first purlin, half of it coated with an emergency blanket (50 × 150 cm2, Carl Roth GmbH, Karlsruhe, Germany) coated with metallized mylin with an emissivity of 0.03 to 0.05 [24].
- (b)
- Reference field: Left unplanked to serve as a control.
- (c)
- Membrane-shielded field: Covered with a conventional under-roof membrane (Ampatop, Ampack, Götzis, Austria).
3. Results and Discussion
3.1. Climatic Conditions and Thermal Performance of the Construction
3.2. Air Speed in the Rafter Fields
3.3. Thermal Load of Interior Roof Surfaces
4. Conclusions
- For heritage buildings, optimized IR shields combining OSP panels with low-emissivity coatings offer a practical solution for reducing summer heat loads without altering exterior appearance (e.g., heritage-protected architecture).
- The cooling potential of ventilated rafter cavities during a Central European summer is considerable. The findings are particularly relevant for roof surfaces exposed to intense solar radiation, and future research should adopt a broader, international perspective.
- All test configurations showed elevated temperatures beneath the roof compared to indoor air. Surfaces with low emissivity, particularly aluminum-coated OSB panels, significantly reduced radiative heat input, confirming their effectiveness in mitigating thermal loads even without extreme summer heat.
- The present findings are constrained by the summer observation period and the characteristics of a single building. Future research should encompass year-round measurements and include buildings with diverse roof slopes and roof orientations to enhance the generalizability and practical relevance of the results.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omle, I.; Kovács, E.; Bolló, B. Applying recent efficient numerical methods for long-term simulations of heat transfer in walls to optimize thermal insulation. Results Eng. 2023, 20, 101476. [Google Scholar] [CrossRef]
- Heider, J.; Conrad, N.; Stark, T.; Abdulganiew, A.; Kosack, P.; Wagner, A.-K. Forschungsprojekt “IR-Bau”: Potential von Infrarot-Heizsystemen für Hocheffiziente Wohngebäude; Fraunhofer IRB: Konstanz, Germany, 2020. [Google Scholar]
- Dabaieh, M.; Wanas, O.; Hegazy, M.A.; Johansson, E. Reducing cooling demands in a hot dry climate: A simulation study for non-insulated passive cool roof thermal performance in residential buildings. Energy Build. 2015, 89, 142–152. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M.; Apostolakis, K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol. Energy 2007, 81, 488–497. [Google Scholar] [CrossRef]
- Suehrcke, H.; Peterson, E.L.; Selby, N. Effect of roof solar reflectance on the building heat gain in a hot climate. Energy Build. 2008, 40, 2224–2235. [Google Scholar] [CrossRef]
- Ziaeemehr, B.; Jandaghian, Z.; Ge, H.; Lacasse, M.; Moore, T. Increasing Solar Reflectivity of Building Envelope Materials to Mitigate Urban Heat Islands: State-of-the-Art Review. Buildings 2023, 13, 2868. [Google Scholar] [CrossRef]
- de Brito Filho, J.P.; Henriquez, J.R.; Dutra, J. Effects of coefficients of solar reflectivity and infrared emissivity on the temperature and heat flux of horizontal flat roofs of artificially conditioned nonresidential buildings. Energy Build. 2011, 43, 440–445. [Google Scholar] [CrossRef]
- Sabzi, D.; Haseli, P.; Jafarian, M.; Karimi, G.; Taheri, M. Investigation of cooling load reduction in buildings by passive cooling options applied on roof. Energy Build. 2015, 109, 135–142. [Google Scholar] [CrossRef]
- Aguilar-Castro, K.M.; Cerino-Isidro, J.L.; Torres-Aguilar, C.E.; May Tzuc, O.; Macias-Melo, E.V.; Serrano-Arellano, J. Effect of interior and exterior roof coating on heat gain inside a house. Constr. Build. Mater. 2024, 454, 139045. [Google Scholar] [CrossRef]
- Mohamed, H.I.; Lee, J.; Chang, J.D. The Effect of Exterior and Interior Roof Thermal Radiation on Buildings Cooling Energy. Procedia Eng. 2016, 145, 987–994. [Google Scholar] [CrossRef]
- Escudero, C.; Martin, K.; Erkoreka, A.; Flores, I.; Sala, J.M. Experimental thermal characterization of radiant barriers for building insulation. Energy Build. 2013, 59, 62–72. [Google Scholar] [CrossRef]
- Kain, G.; Idam, F.; Kristak, L. Infrared (IR) Shading as a Strategy to Mitigate Overheating in Traditional Buildings. Buildings 2025, 15, 3471. [Google Scholar] [CrossRef]
- Miranville, F.; Boyer, H.; Lauret, P.; Lucas, F. A combined approach for determining the thermal performance of radiant barriers under field conditions. Sol. Energy 2008, 82, 399–410. [Google Scholar] [CrossRef]
- Ferreira, M.; Corvacho, H. The effect of the use of radiant barriers in building roofs on summer comfort conditions—A case study. Energy Build. 2018, 176, 163–178. [Google Scholar] [CrossRef]
- Lee, S.W.; Lim, C.H.; Salleh, E.I.B. Reflective thermal insulation systems in building: A review on radiant barrier and reflective insulation. Renew. Sustain. Energy Rev. 2016, 65, 643–661. [Google Scholar] [CrossRef]
- Medina, M.A.; Young, B. A perspective on the effect of climate and local environmental variables on the performance of attic radiant barriers in the United States. Build. Environ. 2006, 41, 1767–1778. [Google Scholar] [CrossRef]
- Stevens, T.R.; Parsi, B.; Mulford, R.B.; Crane, N.B. Dynamic Radiant Barrier for Modulating Heat Transfer and Reducing Building Energy Usage. Energies 2024, 17, 3959. [Google Scholar] [CrossRef]
- Ye, X.; Chen, Y.; Sheng, J.; Wang, W. An overview of climate change adaptation and mitigation research in architecture heritage. Energy Build. 2025, 351, 116680. [Google Scholar] [CrossRef]
- Idam, F.; Kain, G. Neo-ecological Approaches to Solving the Construction Crisis. CERJ 2025, 15, 555913. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.H.; Yeo, M.S.; Kim, K.W. An experimental study on airflow in the cavity of a ventilated roof. Build. Environ. 2009, 44, 1431–1439. [Google Scholar] [CrossRef]
- Kain, G.; Idam, F.; Federspiel, F.; Réh, R.; Krišťák, Ľ. Suitability of Wooden Shingles for Ventilated Roofs: An Evaluation of Ventilation Efficiency. Appl. Sci. 2020, 10, 6499. [Google Scholar] [CrossRef]
- Gagliano, A.; Patania, F.; Nocera, F.; Ferlito, A.; Galesi, A. Thermal performance of ventilated roofs during summer period. Energy Build. 2012, 49, 611–618. [Google Scholar] [CrossRef]
- Quevedo, T.C.; Melo, A.P.; Lamberts, R. Assessing cooling loads from roofs with attics: Modeling versus field experiments. Energy Build. 2022, 262, 112003. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, H.; Qin, B.; Zhu, R.; Zhang, J.; Ghosh, P.; Wang, Z.; Qiu, M.; Li, Q. High-Temperature Stealth Across Multi-Infrared and Microwave Bands with Efficient Radiative Thermal Management. Nanomicro. Lett. 2025, 17, 199. [Google Scholar] [CrossRef]
- Marek, R.; Nitsche, K. Praxis der Wärmeübertragung; Carl Hanser: Leipzig, Germany, 2012. [Google Scholar]
- Awbi, H.B. Calculation of convective heat transfer coefficients of room surfaces for natural convection. Energy Build. 1998, 28, 219–227. [Google Scholar] [CrossRef]
- Cheng, V.; Ng, E.; Givoni, B. Effect of envelope colour and thermal mass on indoor temperatures in hot humid climate. Sol. Energy 2005, 78, 528–534. [Google Scholar] [CrossRef]
- Winandy, J.E.; Barnes, H.M.; Falk, R.H. Summer temperatures of roof assemblies using western redcedar, wood-thermoplastic composite, or fiberglass shingles. For. Prod. J. 2004, 54, 27–33. [Google Scholar]
- Al-Sanea, S.A. Thermal performance of building roof elements. Build. Environ. 2002, 37, 665–675. [Google Scholar] [CrossRef]
- Saha, S.C.; Khan, M. A review of natural convection and heat transfer in attic-shaped space. Energy Build. 2011, 43, 2564–2571. [Google Scholar] [CrossRef]
- Ciampi, M.; Leccese, F.; Tuoni, G. Energy analysis of ventilated and microventilated roofs. Sol. Energy 2005, 79, 183–192. [Google Scholar] [CrossRef]
- Campaniço, H.; Hollmuller, P.; Soares, P.M. Assessing energy savings in cooling demand of buildings using passive cooling systems based on ventilation. Appl. Energy 2014, 134, 426–438. [Google Scholar] [CrossRef]
- Hageman, R.; Modera, M.P. Energy savings and HVAC capacity implications of a low-emissivity interior surface for roof sheathing. In Proceedings of the 1996 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 25–31 August 1996; pp. 1.117–1.130. [Google Scholar]









| Measuring Point | Measurend (Type of Sensor) | Resolution of Sensors |
|---|---|---|
| M1 (OSB, free field, underlay membrane) | Air temperature under the influence of thermal radiation (Testo 1 174 T, 1x IR reflective, 1x IR absorptive) | 0.1 K |
| IR radiation (Almemo 2 FLA 623 IR) | 0.1–400 W/m2 (spectral sensitivity 800–1100 nm (maximum 950 nm) | |
| M2 | Surface temperature sheathing (Almemo 2590) | 0.1 K |
| M3 | Inside surface temperature roof formwork (Almemo 2590) | 0.1 K |
| M4 | Air speed (Almemo FV AD35TH4, thermal anemometer) | 0.01 m/s (range 0.08–2 m/s) |
| M5 | Air temperature at foot purlin (Almemo 2590) | 0.1 K |
| M6 | Air temperature attic (Testo 174T) | 0.1 K |
| M7 | Outside air temperature (Testo 174H) | 0.1 K |
| M8 | Air temperature outlet ridge (Testo 174T, IR shaded) | 0.1 K |
| Date | Planking | (°C) | (W/m2) | (W/m2) | (W/m2) |
|---|---|---|---|---|---|
| 26 August 2025 | Free field | 3.9 (1.9) | 19.4 (9.6) | 22.8 (11.0) | 41.4 (20.6) |
| OSB | 2.4 (0.9) | 11.9 (4.3) | 13.3 (5.0) | 25.2 (9.3) | |
| Foil | 2.2 (1.2) | 11.0 (5.9) | 12.4 (6.7) | 23.4 (12.6) | |
| OSB + Alu | 3.7 (1.1) | 18.3 (5.5) | 1.1 (0.4) | 19.5 (5.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kain, G.; Idam, F.; Kristak, L. Performance Optimized Infrared Shading Elements for Traditional Buildings. Energies 2025, 18, 6495. https://doi.org/10.3390/en18246495
Kain G, Idam F, Kristak L. Performance Optimized Infrared Shading Elements for Traditional Buildings. Energies. 2025; 18(24):6495. https://doi.org/10.3390/en18246495
Chicago/Turabian StyleKain, Günther, Friedrich Idam, and Lubos Kristak. 2025. "Performance Optimized Infrared Shading Elements for Traditional Buildings" Energies 18, no. 24: 6495. https://doi.org/10.3390/en18246495
APA StyleKain, G., Idam, F., & Kristak, L. (2025). Performance Optimized Infrared Shading Elements for Traditional Buildings. Energies, 18(24), 6495. https://doi.org/10.3390/en18246495

