Abstract
As renewable energy sources increasingly penetrate power systems, ensuring operational stability during grid faults poses a significant challenge. Conventional fault-ride-through (FRT) control strategies often lack systematic parameter optimization, resulting in limited support for transient rotor angle stability and inadequate suppression of transient overvoltages. This paper introduces a comprehensive optimization framework to address these shortcomings. We first develop a novel quasi-steady-state model that accurately captures critical states governing transient stability and voltage security. Variational analysis at these states yields gradient information to guide stability enhancement. Leveraging this insight, we propose a gradient-informed optimization approach to tune FRT parameters, simultaneously improving transient rotor angle stability and mitigating overvoltages. The effectiveness of the proposed model and method is demonstrated through simulations on a benchmark renewable-integrated power system.