Estimation of Lithium Battery State of Health Using Hybrid Deep Learning with Multi-Step Feature Engineering and Optimization Algorithm Integration
Abstract
1. Introduction
- (1)
- Extraction of health factors: The battery health indicators in existing articles are usually directly given or refer to other studies. Due to the differences in batteries, the quantity and universality of these health indicators vary.
- (2)
- Fusion model: Traditional single models have difficulty capturing long-distance dependencies when dealing with time series data, resulting in low prediction accuracy. This paper integrates the Transformer encoder and BILSTM and proposes the ORIME–Transformer–BILSTM model that combines global search and deep mining, which can quickly and accurately capture the features and intrinsic correlations of key health indicators in battery time series data.
- (3)
- Hyperparameter optimization: Traditional optimization algorithms require manual adjustment of parameters during training, which is not only time-consuming but also prone to slow model convergence. To this end, the ORIME algorithm is introduced to achieve adaptive adjustment of the model’s hyperparameters, enhancing the model’s stability and generalization ability.
2. Methodology
2.1. Definition of SOH
2.2. Transformer–BILSTM Module
2.3. Improved Rime Ice Optimization Algorithm
2.3.1. Population-Initialization Improvements
2.3.2. Improvement of Search Strategies
2.3.3. Improve the Positive Greed Mechanism
2.4. Full Text Framework
3. Experimental Preparation
3.1. Selection of the Dataset
3.2. Health Feature Extraction
3.3. Screening of Health Factors
3.4. Dataset Division
3.5. Model Parameter Configuration
4. Experimental Validation and Analysis
4.1. Performance Metrics
4.2. The Prediction Effect of Different Training Set Ratios
4.3. Comparison with Different Models
4.4. Comparison with the Results of the Published Literature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature dependent ageing mechanisms in Lithium-ion batteries–A Post-Mortem study. J. Power Sources 2014, 262, 129–135. [Google Scholar] [CrossRef]
- Qian, G.; Li, Y.; Chen, H.; Xie, L.; Liu, T.; Yang, N.; Song, Y.; Lin, C.; Cheng, J.; Nakashima, N.; et al. Revealing the aging process of solid electrolyte interphase on SiOx anode. Nat. Commun. 2023, 14, 6048. [Google Scholar] [CrossRef]
- Peng, Y.; Ding, M.; Zhang, K.; Zhang, H.; Hu, Y.; Lin, Y.; Hu, W.; Liao, Y.; Tang, S.; Liang, J.; et al. Quantitative analysis of the coupled mechanisms of lithium plating, SEI growth, and electrolyte decomposition in fast charging battery. ACS Energy Lett. 2024, 9, 6022–6028. [Google Scholar] [CrossRef]
- Krewer, U.; Röder, F.; Harinath, E.; Braatz, R.D.; Bedürftig, B.; Findeisen, R. Dynamic models of Li-ion batteries for diagnosis and operation: A review and perspective. J. Electrochem. Soc. 2018, 165, A3656. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y.; Feng, X. A hierarchical and flexible data-driven method for online state-of-health estimation of Li-ion battery. IEEE Trans. Veh. Technol. 2020, 69, 14739–14748. [Google Scholar] [CrossRef]
- Manfredi, P. Probabilistic uncertainty quantification of microwave circuits using Gaussian processes. IEEE Trans. Microw. Theory Tech. 2022, 71, 2360–2372. [Google Scholar] [CrossRef]
- Ma, B.; Yu, H.Q.; Wang, W.T.; Yang, X.B.; Zhang, L.S.; Xie, H.C.; Zhang, C.; Chen, S.Y.; Liu, X.H. State of health and remaining useful life prediction for lithium-ion batteries based on differential thermal voltammetry and a long and short memory neural network. Rare Met. 2023, 42, 885–901. [Google Scholar] [CrossRef]
- Xing, C.; Liu, H.; Zhang, Z.; Wang, J.; Wang, J. Enhancing Lithium-Ion Battery Health Predictions by Hybrid-Grained Graph Modeling. Sensors 2024, 24, 4185. [Google Scholar] [CrossRef]
- Kalhori, M.R.N.; Madani, S.S.; Fowler, M. Correlation-aware kernel selection for multi-scale feature fusion of convolutional neural networks in multivariate and multi-step time series forecasting: Application to Li-ion battery state of health forecasting. J. Energy Storage 2025, 139, 118860. [Google Scholar] [CrossRef]
- Li, N.; Zhang, H.; Zhong, J.; Miao, Q. SOH Estimation for Battery Energy Storage Systems Based-on Multi-scale Temporal Convolutional Network and Relaxation Voltage. IEEE Trans. Instrum. Meas. 2025, 74, 3555612. [Google Scholar]
- He, Z.; Gao, M.; Ma, G.; Liu, Y.; Chen, S. Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks. J. Power Sources 2014, 267, 576–583. [Google Scholar] [CrossRef]
- Sun, H.; Sun, J.; Zhao, K.; Wang, L.; Wang, K. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation. Math. Probl. Eng. 2022, 2022, 9645892. [Google Scholar] [CrossRef]
- Shi, D.; Zhao, J.; Wang, Z.; Zhao, H.; Wang, J.; Lian, Y.; Burke, A.F. Spatial-temporal self-attention transformer networks for battery state of charge estimation. Electronics 2023, 12, 2598. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Tian, D.; Ye, M.; Niu, Y. A deep learning method based on transfer learning and noise-resistant hybrid neural network for lithium-ion battery state of health and state of charge estimation. Electrochim. Acta 2025, 543, 147577. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Kong, L.; Xu, H.; Shen, H.; Chen, M. Multi-step state of health prediction of lithium-ion batteries based on multi-feature extraction and improved Transformer. J. Energy Storage 2025, 105, 114538. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Zhang, J.; Wu, Q.; Jiang, L.; Shi, Y.; Lyu, L.; Cai, G. Fault diagnosis of energy storage batteries based on dual driving of data and models. J. Energy Storage 2025, 112, 115485. [Google Scholar] [CrossRef]
- Huang, D.; Qin, M.; Liu, D.; Sun, Q.; Hu, S.; Zhang, Y. Multi-step ahead SOH prediction for vehicle batteries based on multimodal feature fusion and spatio-temporal attention neural network. J. Energy Storage 2025, 124, 116837. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, C.; Jing, W.; Foo, E.Y.S.; Lai, X.; Zeng, N. State of Health Estimation for Lithium-Ion Batteries Using Separable LogSparse Self-Attention Transformer. IEEE Trans. Instrum. Meas. 2025, 74, 3522513. [Google Scholar] [CrossRef]
- Soon, K.L.; Soon, L.T. A hybrid quantum neural network and classical gated recurrent unit for battery state of health forecasting incorporating SHAP analysis. J. Energy Storage 2025, 136, 118596. [Google Scholar] [CrossRef]
- Song, J.; Wang, H.; Liu, Y.; Wang, R.; Wang, K. Enhancing variational autoencoder for estimation of lithium-ion batteries State-of-Health using impedance data. Energy 2025, 337, 138739. [Google Scholar] [CrossRef]
- Jin, M.; Ming, X.; Wei, D.; Qiao, Z.; Zhang, J.; Bai, X.; Qiu, P.; Wang, L. Physics-Informed Neural SOH Estimation Method for Lithium-ion Battery under Partial Observability and Sparse Sensor Data. 2025. Available online: https://sciety-labs.elifesciences.org/articles/by?article_doi=10.21203/rs.3.rs-6806872/v1 (accessed on 1 September 2025).
- Gou, B.; Xu, Y.; Feng, X. State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Trans. Veh. Technol. 2020, 69, 10854–10867. [Google Scholar] [CrossRef]
- Miao, M.; Xiao, C.; Yu, J. Multi-source Domain Meta-learning Network for Battery State-of-Health Estimation under Multi-target Working Conditions. IEEE Trans. Power Electron. 2025, 40, 9786–9799. [Google Scholar] [CrossRef]
- Wu, M.; Xia, J. Meta-learning few-shot prediction of electric vehicle charging time with parallel CNN-Transformer networks. Int. J. Green Energy 2025, in press. [Google Scholar] [CrossRef]
- Meng, J.; Hu, D.; Lin, M.; Peng, J.; Wu, J.; Stroe, D.I. A domain-adversarial neural network for transferable lithium-ion battery state of health estimation. IEEE Trans. Transp. Electrif. 2025, 11, 7732–7742. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Wang, Z. Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression. J. Power Sources 2020, 467, 228358. [Google Scholar] [CrossRef]
- Zhang, C.; Tu, L.; Yang, Z.; Du, B.; Zhou, Z.; Wu, J.; Chen, L. A CMMOG-based lithium-battery SOH estimation method using multi-task learning framework. J. Energy Storage 2025, 107, 114884. [Google Scholar] [CrossRef]
- Yao, X.Y.; Chen, G.; Pecht, M.; Chen, B. A novel graph-based framework for state of health prediction of lithium-ion battery. J. Energy Storage 2023, 58, 106437. [Google Scholar] [CrossRef]
- Wang, T.; Dong, Z.Y.; Xiong, H. Adaptive multi-personalized federated learning for state of health estimation of multiple batteries. IEEE Internet Things J. 2024, 11, 39994–40008. [Google Scholar] [CrossRef]
- Chu, M.; Li, H.; Liao, X.; Cui, S. Reinforcement learning-based multiaccess control and battery prediction with energy harvesting in IoT systems. IEEE Internet Things J. 2018, 6, 2009–2020. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Hu, X.; Li, J.; Zhang, K.; Xie, Y.; Wu, R.; Song, Z. Multi-modal framework for battery state of health evaluation using open-source electric vehicle data. Nat. Commun. 2025, 16, 1137. [Google Scholar] [CrossRef] [PubMed]
- Barragan-Moreno, A. Machine Learning-Based Online State-of-Health Estimation of Electric Vehicle Batteries: Artificial Intelligence Applied to Battery Management Systems. Master’s Thesis, Aalborg Universitet, Aalborg, Denmark, 2021. [Google Scholar]
- Wu, W.; Chen, Z.; Liu, W.; Zhou, D.; Xia, T.; Pan, E. Battery health prognosis in data-deficient practical scenarios via reconstructed voltage-based machine learning. Cell Rep. Phys. Sci. 2025, 6, 102442. [Google Scholar] [CrossRef]
- Kulkarni, S.V.; Arjun, G.; Gupta, S.; Sinha, R.; Shukla, A. Advanced battery diagnostics for electric vehicles using CAN based BMS data with EKF and data driven predictive models. Sci. Rep. 2025, 15, 32848. [Google Scholar] [CrossRef]
- Zhang, K.; Tang, L.; Fan, W.; He, Y.; Rao, J. Aging and echelon utilization status monitoring of power batteries based on improved EMD and PCA of acoustic emission. IEEE Sens. J. 2024, 24, 12142–12152. [Google Scholar] [CrossRef]
- Su, H.; Zhao, D.; Heidari, A.A.; Liu, L.; Zhang, X.; Mafarja, M.; Chen, H. RIME: A physics-based optimization. Neurocomputing 2023, 532, 183–214. [Google Scholar] [CrossRef]
- Yan, M.X.; Deng, Z.H.; Lai, L.; Xu, Y.H.; Tong, L.; Zhang, H.G.; Li, Y.Y.; Gong, M.H.; Liu, G.J. A Sustainable SOH Prediction Model for Lithium-Ion Batteries Based on CPO-ELM-ABKDE with Uncertainty Quantification. Sustainability 2025, 17, 5205. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Cai, Y.; Qin, T. A Simple Method for State of Health Estimation of Lithium-ion Batteries Based on the Constant Voltage Charging Curves. Electrochemistry 2024, 92, 077008. [Google Scholar] [CrossRef]
- Shang, S.; Xu, Y.; Zhang, H.; Zheng, H.; Yang, F.; Zhang, Y.; Wang, S.; Yan, Y.; Cheng, J. Enhancing Lithium-Ion Battery State-of-Health Estimation via an IPSO-SVR Model: Advancing Accuracy, Robustness, and Sustainable Battery Management. Sustainability 2025, 17, 6171. [Google Scholar] [CrossRef]
- Liu, G.; Deng, Z.; Xu, Y.; Lai, L.; Gong, G.; Tong, L.; Zhang, H.; Li, Y.; Gong, M.; Yan, M.; et al. Lithium-ion battery state of health estimation based on CNN-LSTM-Attention-FVIM algorithm and fusion of multiple health features. Appl. Sci. 2025, 15, 7555. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Yong, J.; Yang, C.; Yan, L.; Zheng, Y. State of health estimation of lithium-ion batteries using fusion health indicator by PSO-ELM model. Batteries 2024, 10, 380. [Google Scholar] [CrossRef]









| Number | Location |
|---|---|
| B5 | Line1, Line24, Line85, Line313, Line616 |
| B6 | Line1, Line24, Line85, Line313, Line616 |
| B7 | Line1, Line24, Line85, Line313, Line616 |
| B18 | Line115, Line116, Line117, Line140 |
| Relevance | Spearman | Kendall |
|---|---|---|
| excellent | ||
| good | ||
| moderate | ||
| poor | ||
| very poor |
| Name | Model | Parameters |
|---|---|---|
| BP | M1 | Neuron Count = 20; Learning Rate = 0.01 |
| GRU | M2 | Hidden Units = 32; Dropout Rate = 0.2 |
| LSTM | M3 | Hidden Units = 64; Learning Rate = 4.5 × 10−3 |
| BILSTM | M4 | Hidden Units = 64; Dropout Rate = 0.3 |
| Transformer | M5 | Layers = 2; Attention Heads = 4; Key Dimension = 64 |
| Transformer–BILSTM | M6 | Encoder Layers = 2; Attention Heads = 2; Key Dimension = 4; Hidden Units = 64; Dropout Rate = 0.5; Learning Rate = 1.1609 × 10−3 |
| RIME–Transformer–BILSTM | M7 | Encoder Layers = 2; Attention Heads = 3; Key Dimension = 4; Hidden Units = 96; Dropout Rate = 0.4; Learning Rate = 8.7 × 10−4 Population Size = 30; Max Iterations = 150 |
| ORIME–Transformer–BILSTM | M0 | Encoder Layers = 6; Attention Heads = 2; Key Dimension = 4; Hidden Units = 64; Dropout Rate = 0.5; Learning Rate = 1.1609 × 10−3 Population Size = 30; Max Iterations = 150 |
| Number | Model | Training Set Ratio | MAE (%) | MAPE (%) | RMSE (%) |
|---|---|---|---|---|---|
| B5 | M0 | 40% | 0.3164 | 0.4850 | 0.3882 |
| 50% | 0.2819 | 0.4320 | 0.3516 | ||
| 60% | 0.2537 | 0.3811 | 0.2982 | ||
| B6 | M0 | 40% | 0.3102 | 0.4700 | 0.3820 |
| 50% | 0.2890 | 0.4510 | 0.3560 | ||
| 60% | 0.2634 | 0.4337 | 0.3106 | ||
| B7 | M0 | 40% | 0.2971 | 0.4550 | 0.3714 |
| 50% | 0.2770 | 0.4080 | 0.3420 | ||
| 60% | 0.2592 | 0.3622 | 0.2824 | ||
| B18 | M0 | 40% | 0.2281 | 0.3500 | 0.2873 |
| 50% | 0.2001 | 0.3050 | 0.2520 | ||
| 60% | 0.1727 | 0.2511 | 0.2146 |
| Number | Error Metrics | M0 | M1 | M2 | M3 | M4 | M5 | M6 | M7 |
|---|---|---|---|---|---|---|---|---|---|
| B5 | MAE (%) | 0.2537 | 0.9575 | 0.7185 | 0.6777 | 0.4633 | 0.5162 | 0.3939 | 0.2602 |
| MAPE (%) | 0.3811 | 1.4371 | 1.0933 | 1.0293 | 0.7041 | 0.7808 | 0.5992 | 0.3939 | |
| RMSE (%) | 0.2982 | 1.4409 | 0.9005 | 0.7215 | 0.5117 | 0.5181 | 0.4758 | 0.3148 | |
| B6 | MAE (%) | 0.2634 | 0.9241 | 0.7533 | 0.6503 | 0.5981 | 0.4233 | 0.3421 | 0.3047 |
| MAPE (%) | 0.4337 | 1.5214 | 1.2282 | 1.0678 | 0.9753 | 0.6833 | 0.5695 | 0.5019 | |
| RMSE (%) | 0.3106 | 1.0134 | 0.7729 | 0.7079 | 0.8051 | 0.5304 | 0.4556 | 0.3534 | |
| B7 | MAE (%) | 0.2592 | 0.7263 | 0.7555 | 0.4686 | 0.4491 | 0.3983 | 0.3162 | 0.3093 |
| MAPE (%) | 0.3622 | 1.0135 | 1.0563 | 0.6525 | 0.6276 | 0.5523 | 0.4384 | 0.4311 | |
| RMSE (%) | 0.2824 | 0.7781 | 0.8198 | 0.6899 | 0.4985 | 0.4656 | 0.3628 | 0.3416 | |
| B18 | MAE (%) | 0.1727 | 0.5829 | 0.5556 | 0.4356 | 0.3884 | 0.4101 | 0.3358 | 0.2007 |
| MAPE (%) | 0.2511 | 0.8428 | 0.8111 | 0.6343 | 0.5648 | 0.5959 | 0.4897 | 0.2919 | |
| RMSE (%) | 0.2146 | 0.6697 | 0.6591 | 0.5087 | 0.4483 | 0.4688 | 0.3969 | 0.2444 |
| Number | Error Metrics | M0 | M1 | M2 | M3 | M4 | M5 | M6 | M7 |
|---|---|---|---|---|---|---|---|---|---|
| B5 | EDC | 1.1936 | 1.5045 | 1.2524 | 1.0646 | 1.1045 | 1.0037 | 1.2077 | 1.2102 |
| B6 | EDC | 1.1807 | 1.0260 | 1.0875 | 1.3643 | 1.2529 | 1.3318 | 1.1600 | 1.1807 |
| B7 | EDC | 1.0906 | 1.0850 | 1.4723 | 1.1100 | 1.1690 | 1.1474 | 1.1044 | 1.0906 |
| B18 | EDC | 1.2421 | 1.1863 | 1.1677 | 1.1547 | 1.1434 | 1.1820 | 1.2188 | 1.2421 |
| CBCI(MAE) | 0.0907 | 0.3412 | 0.3254 | 0.2907 | 0.2100 | 0.3435 | 0.2212 | 0.1086 | |
| CBCI(MAPE) | 0.1826 | 0.6786 | 0.5361 | 0.4780 | 0.4105 | 0.5297 | 0.3473 | 0.2717 | |
| CBCI(RMSE) | 0.0836 | 0.7712 | 0.2414 | 0.2132 | 0.3568 | 0.0637 | 0.0789 | 0.1304 |
| Number | Error Metrics | M8 | M9 | M10 | M11 | M12 | M0 |
|---|---|---|---|---|---|---|---|
| B5 | MAE (%) | 0.3800 | 0.7223 | 0.3879 | 0.5100 | 0.3100 | 0.2537 |
| RMSE (%) | 0.6300 | 0.8777 | 0.5847 | 0.6700 | 0.4300 | 0.2982 | |
| B6 | MAE (%) | None | 0.8219 | 0.9289 | None | None | 0.2634 |
| RMSE (%) | None | 1.0893 | 1.0514 | None | None | 0.3106 | |
| B7 | MAE (%) | 0.4400 | 0.9991 | 0.3654 | 0.6200 | 0.3600 | 0.2592 |
| RMSE (%) | 0.4900 | 1.0901 | 0.5758 | 0.7500 | 0.4600 | 0.2824 | |
| B18 | MAE (%) | 0.8600 | None | None | 0.8600 | None | 0.1727 |
| RMSE (%) | 0.1700 | None | None | 1.1800 | None | 0.2146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Dai, Y.; Li, K.; Zhang, Z.; Fang, Y.; Chen, B.; Zhao, Q. Estimation of Lithium Battery State of Health Using Hybrid Deep Learning with Multi-Step Feature Engineering and Optimization Algorithm Integration. Energies 2025, 18, 5849. https://doi.org/10.3390/en18215849
Zhao Z, Dai Y, Li K, Zhang Z, Fang Y, Chen B, Zhao Q. Estimation of Lithium Battery State of Health Using Hybrid Deep Learning with Multi-Step Feature Engineering and Optimization Algorithm Integration. Energies. 2025; 18(21):5849. https://doi.org/10.3390/en18215849
Chicago/Turabian StyleZhao, Zhiguo, Yibo Dai, Ke Li, Zhirong Zhang, Yibing Fang, Biao Chen, and Qian Zhao. 2025. "Estimation of Lithium Battery State of Health Using Hybrid Deep Learning with Multi-Step Feature Engineering and Optimization Algorithm Integration" Energies 18, no. 21: 5849. https://doi.org/10.3390/en18215849
APA StyleZhao, Z., Dai, Y., Li, K., Zhang, Z., Fang, Y., Chen, B., & Zhao, Q. (2025). Estimation of Lithium Battery State of Health Using Hybrid Deep Learning with Multi-Step Feature Engineering and Optimization Algorithm Integration. Energies, 18(21), 5849. https://doi.org/10.3390/en18215849

