Valorisation of Poultry Feathers Through Pyrolysis: A Pilot-Scale Waste-to-Energy Approach
Abstract
1. Introduction
2. Experimental
2.1. Methods
2.2. Physicochemical Properties Characterisation
2.3. Pyrolysis Process
3. Results and Discussion
3.1. Physicochemical Analysis of Raw Materials
3.2. Pyrolysis Products Yield
3.3. Char Properties
3.4. Gas Composition
4. Conclusions
- (1)
- Impact of feedstock properties on pyrolysis products:
- Although PF and LG possess distinct physicochemical properties, pyrolysis produced chars with similar characteristics. Compared to the original feedstock, pyrolysis increased the LHV of the chars (26.1 and 25.6 MJ·kg−1), increased carbon content (67.7–71.4%), and decreased hydrogen (3.1–3.7%) and sulphur (0.6–1.2%) contents.
- Sulphur-containing compounds in PF were highly thermally unstable and tended to evolve from the char structure, whereas sulphur compounds in LG were more thermally stable and largely remained in the char.
- Gases produced during PF pyrolysis contained 32.9% CO, 28.8% H2, 22.0% CH4, and 16.9% CO2, partially aligning with literature data [16]; the main difference concerned the CH4 fraction.
- Gases from LG pyrolysis were predominantly composed of 44.2% CO2, followed by 22.1% H2, 17.6% CO, and 16.1% CH4, consistent with literature reports [58].
- (2)
- Impact of blend composition on pyrolysis products:
- The distribution of char, gas, and oil fractions in the 5PF:95LG and 20PF:80LG mixtures showed no evidence of interactions between PF and LG, contradicting the claims in [20] that co-pyrolysis positively affects solid matter retention.
- A similar lack of interaction was observed for C, H, and S contents.
- Gas compositions from 5PF:95LG and 20PF:80LG mixtures were consistent with expectations and showed no interactions between individual fuel components.
- (3)
- Impact of temperature on pyrolysis products:
- Sulphur content in chars increased with temperature (1.0% to 1.7%), a rare phenomenon previously noted in [53], likely related to the high proportion of mineral sulphur in LG.
- LHV of gases slightly decreased with temperature, from 10.8 to 10.5 MJ Nm−3.
- (4)
- Impact of pressure on pyrolysis products:
- Increasing the pressure from 0.1 MPa to 1.0 MPa increased char yield (from 56.5% to 62.4%) and decreased gas (34.8% to 33.1%) and oil (8.7% to 4.5%) yields. No reference data were available for PF pressurised pyrolysis. However, pressure effects on char yield are consistent with studies on lignite and hard coal [42,43,44,45].
- Increasing pressure led to higher C (71.0% to 72.8%) and H (2.3% to 3.5%) contents, with sulphur fluctuating between 1.2% and 1.4%. Similar observations for C and S were reported in [44].
- Increasing pressure increased CO2 (42.5% to 47.4%) and CH4 (16.3% to 33.7%) fractions, while H2 (22.1% to 10.2%) and CO (19.1% to 8.7%) contents decreased.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABPs | animal by-products |
C | carbon content in solid materials, % |
CH4 | methane share in pyrolysis gas, % |
CO | carbon monoxide share in pyrolysis gas, % |
CO2 | carbon dioxide share in pyrolysis gas, % |
FC | fixed carbon content in solid materials, % |
H | hydrogen content in solid materials, % |
H2 | hydrogen share in pyrolysis gas, % |
HHV | higher heating value, MJ·Nm−3 (for gases) or MJ·kg−1 (for solids) |
HR | heating rate |
LG | lignite |
LHV | lower heating value, MJ·Nm−3 (for gases) or MJ·kg−1 (for solids) |
M | moisture content in solid materials, % |
N | nitrogen content in solid materials, % |
O | oxygen content in solid materials, % |
PF | poultry feathers |
S | sulphur content in solid materials, % |
TGA | thermogravimetric analyzer |
V | volatile content in solid materials, % |
WtE | waste-to-energy |
References
- European Parliament and Council Regulation (EC). No 1069/2009 of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption. Off. J. Eur. Union 2009, OJ L 300, 1–33. [Google Scholar]
- Tesfaye, T.; Sithole, B.; Ramjugernath, D. Valorisation of chicken feathers: A review on recycling and recovery route—Current status and future prospects. Clean Technol. Environ. Policy 2017, 19, 2363–2378. [Google Scholar] [CrossRef]
- European Parliament and Council Regulation (EC). No 1774/2002 of 3 October 2002 establishing health rules as regards animal by-products not intended for human consumption. Off. J. Eur. Union 2002, OJ L 273, 1–95. [Google Scholar]
- European Commission CORDIS. Converting Poultry Feathers from Discarded Waste into Valuable Raw Materials. Project ID: 723268—KARMA2020 Project Information. Available online: https://cordis.europa.eu/article/id/418077-converting-poultry-feathers-from-discarded-waste-into-valuable-raw-materials (accessed on 12 August 2025).
- European Commission CORDIS. Unlocking a Feather Bioeconomy for Keratin-Based Agricultural Applications. Project ID: 101023306—UNLOCK Project Information. Available online: https://cordis.europa.eu/project/id/101023306 (accessed on 12 August 2025).
- European Commission CORDIS. Industrial Feather Waste Valorisation for Sustainable KeRatin Based MAterials. Project ID: 723268—KARMA2020 Project Reporting. Available online: https://cordis.europa.eu/project/id/723268/reporting (accessed on 12 August 2025).
- El Salamony, D.H.; Hassouna, M.S.E.; Zaghloul, T.I.; He, Z.; Abdallah, M.H. Bioenergy production from chicken feather waste by anaerobic digestion and bioelectrochemical systems. Microb. Cell Fact. 2024, 23, 102. [Google Scholar] [CrossRef] [PubMed]
- World Bank. Study of Livestock; World Bank Report. 2012. Available online: https://documents1.worldbank.org/curated/en/156701468147583817/pdf/696530esw0p1000l0study0of0livestock.pdf (accessed on 12 August 2025).
- Singh, P.; Mondal, T.; Sharma, R.; Mahalakshmi, N.; Gupta, M. Poultry Waste Management. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 701–712. [Google Scholar] [CrossRef]
- Talha, M.; Tanveer, M.; Abid, A.; Maan, A.A.; Khan, M.K.I.; Shair, H.; Tanveer, N.; Mustafa, A. Valorization of poultry slaughter wastes via extraction of three structural proteins (collagen, gelatin, keratin): A sustainable approach for circular economy. Trends Food Sci. Technol. 2024, 152, 104667. [Google Scholar] [CrossRef]
- Dudyński, M.; Kwiatkowski, K.; Bajer, K. From feathers to syngas—Technologies and devices. Waste Manag. 2012, 32, 685–691. [Google Scholar] [CrossRef]
- Kwiatkowski, K.; Krzysztoforski, J.; Bajer, K.; Dudyński, M. Bioenergy from feathers gasification—Efficiency and performance analysis. Biomass Bioenergy 2013, 59, 402–411. [Google Scholar] [CrossRef]
- Gusiatin, Z.M.; Kumpiene, J.; Janiszewska, S.; Kasiński, S.; Pecio, M.; Piec, R.; Radziemska, M. A mineral by-product from gasification of poultry feathers for removing Cd from highly contaminated synthetic wastewater. Minerals 2020, 10, 1048. [Google Scholar] [CrossRef]
- Sitka, A.; Szulc, P.; Smykowski, D.; Jodkowski, W. Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier. Renew. Energy 2021, 175, 422–429. [Google Scholar] [CrossRef]
- Arauzo, P.J.; Maziarka, P.A.; Olszewski, M.P.; Isemin, R.L.; Muratova, N.S.; Ronsse, F.; Kruse, A. Valorization of the poultry litter through wet torrefaction and different activation treatments. Sci. Total Environ. 2020, 732, 139288. [Google Scholar] [CrossRef]
- Kluska, J.; Karas, D.; Heda, L.; Szumowski, M.; Szuszkiewicz, J. Thermal and chemical effects of turkey feathers pyrolysis. Waste Manag. 2016, 49, 411–419. [Google Scholar] [CrossRef]
- Brebu, M.; Spiridon, I. Thermal degradation of keratin waste. J. Anal. Appl. Pyrolysis. 2011, 91, 288–295. [Google Scholar] [CrossRef]
- Tuna, A.; Okumus, Y.; Celebi, H.; Seyhan, A.T. Thermochemical conversion of poultry chicken feather fibers of different colors into microporous fibers. J. Anal. Appl. Pyrolysis. 2015, 115, 112–124. [Google Scholar] [CrossRef]
- Senoz, E.; Wool, R.P. Hydrogen storage on pyrolyzed chicken feather fibers. Int. J. Hydrogen Energy 2011, 36, 7122–7127. [Google Scholar] [CrossRef]
- Vercruysse, W.; Muniz, R.R.; Joos, B.; Hardy, A.; Hamed, H.; Desta, D.; Boyen, H.-G.; Safari, M.; Marchal, W.; Vandamme, D.; et al. Co-pyrolysis of chicken feathers and macadamia nut shells, a promising strategy to create nitrogen-enriched electrode materials for supercapacitor applications. Bioresour. Technol. 2024, 396, 130417. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, G.; Bi, D.; Ni, Y.; Song, J.; Song, X.; Wang, H. Effect of pyrolysis conditions on the preparation of nitrogen-containing chemicals and nitrogen-doped carbon from cock feathers: Nitrogen migration and transformation. Energy 2025, 315, 134328. [Google Scholar] [CrossRef]
- Li, Z.; Reimer, C.; Picard, M.; Mohanty, A.K.; Misra, M. Characterization of Chicken Feather Biocarbon for Use in Sustainable Biocomposites. Front. Mater. 2020, 7, 3. [Google Scholar] [CrossRef]
- Senoz, E.; Wool, R.P.; McChalicher, C.W.J.; Hong, C.K. Physical and chemical changes in feather keratin during pyrolysis. Polym. Degrad. Stab. 2012, 97, 297–307. [Google Scholar] [CrossRef]
- Zhao, N.; Lehmann, J.; You, F. Poultry waste valorization via pyrolysis technologies: Economic and environmental life cycle optimization for sustainable bioenergy systems. ACS Sustain. Chem. Eng. 2020, 8, 4633–4646. [Google Scholar] [CrossRef]
- Agblevor, F.A.; Beis, S.; Kim, S.S.; Tarrant, R.; Mante, N.O. Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Manag. 2010, 30, 298–307. [Google Scholar] [CrossRef]
- Mante, O.D.; Agblevor, F.A. Influence of pine wood shavings on the pyrolysis of poultry litter. Waste Manag. 2010, 30, 2537–2547. [Google Scholar] [CrossRef]
- Kim, S.-S.; Agblevor, F.A. Pyrolysis characteristics and kinetics of chicken litter. Waste Manag. 2007, 27, 135–140. [Google Scholar] [CrossRef]
- Poltegor-Institute. Reactor for Catalytic Pyrolysis and gasification of Solid Fuels. WIPO ST 10/C PL448440, 29 February 2024. [Google Scholar]
- ISO 18134-1:2022; Solid Biofuels—Determination of Moisture Content—Oven Dry Method. International Standard published: Geneva, Switzerland, 2022.
- ISO 18123:2023; Solid Biofuels—Determination of Volatile Matter Content—Thermogravimetric Method. International Standard published: Geneva, Switzerland, 2023.
- ISO 18122:2022; Solid Biofuels—Determination of Ash Content. International Standard published: Geneva, Switzerland, 2022.
- ISO 5068-2:2025; Brown Coals and Lignites—Determination of Moisture—Part 2: Indirect Gravimetric Method for Moisture in the Analysis Sample. International Standard published: Geneva, Switzerland, 2025.
- ISO 5071-1:2021; Brown Coals and Lignites—Determination of Volatile Matter in the Analysis Sample—Part 1: Two-Furnace Method. International Standard published: Geneva, Switzerland, 2021.
- ISO 1171:2024; Coal and Coke—Determination of Ash. International Standard published: Geneva, Switzerland, 2024.
- ISO 21663:2020; Solid Recovered Fuels—Methods for the Determination of Carbon (C), Hydrogen (H), Nitrogen (N) and Sulphur (S) by the Instrumental Method. International Standard published: Geneva, Switzerland, 2020.
- ISO 1928:2020; Coal and Coke—Determination of Gross Calorific Value. International Standard published: Geneva, Switzerland, 2020.
- Czajka, K.M.; Kisiela, A.M.; Moroń, W.; Ferens, W.; Rybak, W. Pyrolysis of solid fuels: Thermochemical behaviour, kinetics and compensation effect. Fuel Process. Technol. 2016, 142, 42–53. [Google Scholar] [CrossRef]
- Alvarez, S.; Raydan, N.D.V.; Svahn, I.; Gontier, E.; Rischka, K.; Charrier, B.; Robles, E. Assessment and characterization of duck feathers as potential source of biopolymers from an upcycling perspective. Sustainability 2023, 15, 14201. [Google Scholar] [CrossRef]
- Tesfaye, T.; Sithole, B.; Ramjugernath, D.; Chunilall, V. Valorisation of chicken feathers: Characterisation of chemical properties. Waste Manag. 2017, 68, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, P.N.; Fetisova, O.Y.; Kuznetsova, L.I.; Avid, B.; Purevsuren, B. Insight into the key kinetic steps in the pyrolysis of coking and non-coking coals, characterization of the pyrolysis products. Int. J. Coal Sci. Technol. 2023, 10, 16. [Google Scholar] [CrossRef]
- Lv, T.; Fang, M.; Li, H.; Yan, J.; Cen, J.; Xia, Z.; Tian, J.; Wang, Q. Pyrolysis of a typical low-rank coal: Application and modification of the chemical percolation devolatilization model. RSC Adv. 2021, 11, 17993–18002. [Google Scholar] [CrossRef]
- Matsuoka, K.; Ma, Z.-X.; Akiho, H.; Zhang, Z.-G.; Tomita, A.; Fletcher, T.H.; Wójtowicz, M.A.; Niksa, S. High-Pressure Coal Pyrolysis in a Drop Tube Furnace. Energy Fuels 2003, 17, 1595–1601. [Google Scholar] [CrossRef]
- Zeng, D.; Fletcher, T.H. Effects of Pressure on Coal Pyrolysis and Char Morphology. Energy Fuels 2005, 19, 1828–1837. [Google Scholar] [CrossRef]
- Chen, H.; Yang, H.; Ju, F.; Wang, J.; Zhang, S. The influence of pressure and temperature on coal pyrolysis/gasification. Asia-Pac. J. Chem. Eng. 2007, 2, 203–212. [Google Scholar] [CrossRef]
- Wu, F.; Huang, S.; Jiang, Q.; Jiang, G. Effects of Pressure and Heating Rate on Coal Pyrolysis: A Study in Simulated Underground Coal Gasification. J. Anal. Appl. Pyrolysis 2023, 175, 106179. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Q.; Yan, J.; Cen, J.; Fang, M.; Ye, C. Influence and action mechanism of pressure on pyrolysis process of a low rank Naomaohu coal at different temperatures. J. Anal. Appl. Pyrolysis 2022, 167, 105682. [Google Scholar] [CrossRef]
- Canel, M.; Misirlioglu, Z.; Sinag, A. Hydropyrolysis of a Turkish lignite (Tuncbilek) and effect of temperature and pressure on product distribution. Energy Convers. Manag. 2005, 46, 2185–2197. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.-H.; Huang, Z.-Y.; Liu, J.-Z.; Zhou, J.-H.; Cen, K.-F. Effect of pyrolysis temperature on lignite char properties and slurrying ability. Fuel Process. Technol. 2015, 134, 52–58. [Google Scholar] [CrossRef]
- Jewulski, J.; Skrzypkiewicz, M.; Struzik, M.; Lubarska-Radziejewska, I. Lignite as a fuel for direct carbon fuel cell system. Int. J. Hydrogen Energy 2014, 39, 21778–21785. [Google Scholar] [CrossRef]
- Du, Z.; Guo, W.; Han, L. Thermal transformation of coal molecular structures and their impact on reactivity in metallurgical-grade silicon production. Processes 2025, 13, 1371. [Google Scholar] [CrossRef]
- Jessup, R.S. Heats of Combustion of Diamond and of Graphite. J. Res. Natl. Bur. Stand. 1934, 12, 75–84. [Google Scholar] [CrossRef]
- Jefriadi, J.; Oktaviani, M.; Rahmi, L.; Jelita, R. Characteristics of hybrid coal from co-pyrolysis of lignite and corn cob. J. Bahan Alam Terbarukan 2023, 12, 1–8. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, Q.; Zhu, S.; Meyer, B.; Krzack, S.; Chen, G. Product distribution and sulfur behavior in coal pyrolysis. Fuel Process. Technol. 2004, 85, 849–861. [Google Scholar] [CrossRef]
- Cheah, S.; Malone, S.C.; Feik, C.J. Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover. Environ. Sci. Technol. 2014, 48, 8474–8480. [Google Scholar] [CrossRef]
- Mahinpey, N.; Murugan, P.; Mani, T.; Raina, R. Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor. Energy Fuels 2009, 23, 2736–2742. [Google Scholar] [CrossRef]
- Wafiq, A.; Reichel, D.; Hanafy, M. Pressure influence on pyrolysis product properties of raw and torrefied Miscanthus: Role of particle structure. Fuel 2016, 179, 156–167. [Google Scholar] [CrossRef]
- Stummann, M.Z.; Høj, M.; Schandel, C.B.; Hansen, A.B.; Wiwel, P.; Gabrielsen, J.; Jensen, P.A.; Jensen, A.D. Hydrogen assisted catalytic biomass pyrolysis. Effect of temperature and pressure. Biomass Bioenergy 2018, 115, 97–107. [Google Scholar] [CrossRef]
- Yang, F.; Yu, Q.; Qi, Z.; Qin, Q. Study of pyrolysis product distribution characteristics of lignite in the context of electrochemical catalytic gasification. RSC Adv. 2021, 11, 38434–38443. [Google Scholar] [CrossRef]
- Lei, Z.; Jin, S.; Hao, S.; Yang, J.; Wei, K.; De, T.; Weiwei, X. Investigation on the Distribution of Yimin Lignite Pyrolysis Products and the Stability of its Char. ACS Omega 2021, 6, 13953–13961. [Google Scholar] [CrossRef] [PubMed]
- Serov, A.A.; Hrabovský, M.; Kopecký, V.; Maslani, A.; Hlina, M.; Hurba, O. Lignite gasification in thermal steam plasma. Plasma Chem. Plasma Process. 2019, 39, 395–406. [Google Scholar] [CrossRef]
- Niu, M.; Xin, L.; Cheng, W.; Liu, S.; Wang, B.; Xu, W. Effects of Pressurized Pyrolysis on the Chemical and Porous Structure Evolution of Coal Core during Deep Underground Coal Gasification. ACS Omega 2023, 8, 40153–40161. [Google Scholar] [CrossRef] [PubMed]
Sample | Temp. | Time | HR | Char | Gas | Liq | Ref. |
---|---|---|---|---|---|---|---|
°C | h | °C min−1 | % | % | % | ||
Turkey feathers | 400 | nse | 18 | 15.7 | 65.8 | 16.4 | [16] |
Turkey feathers | 500 | nse | 18 | 7.3 | 81.3 | 12.4 | [16] |
Turkey feathers | 700 | nse | 18 | 4.1 | 82.4 | 14.3 | [16] |
Turkey feathers | 900 | nse | 18 | 2.6 | 75.0 | 23.1 | [16] |
Chicken feathers | 600 | nd | 10 | 37.7 | 12.6 | 49.7 | [17] |
Chicken feather fibres | 215, 400 | 15, 0.5 | 3 | 20.1 | 79.9 | [19] | |
Chicken feather fibres | 215, 400 | 15, 1.0 | 3 | 19.5 | 80.5 | [19] | |
Chicken feather fibres | 215, 400 | 15, 1.5 | 3 | 17.4 | 82.6 | [19] | |
Chicken feather fibres | 215, 400 | 15, 2.0 | 3 | 16.6 | 83.4 | [19] | |
Chicken feather fibres | 215, 420 | 15, 0.5 | 3 | 17.9 | 82.1 | [19] | |
Chicken feather fibres | 215, 420 | 15, 1.0 | 3 | 11.1 | 88.9 | [19] | |
Chicken feather fibres | 215, 420 | 15, 1.5 | 3 | 7.6 | 92.4 | [19] | |
Chicken feather fibres | 215, 420 | 15, 2.0 | 3 | 7.0 | 93 | [19] | |
Chicken feather fibres | 215, 450 | 15, 0.5 | 3 | 10.5 | 89.5 | [19] | |
Chicken feather fibres | 215, 450 | 15, 1.0 | 3 | 7.1 | 92.9 | [19] | |
Chicken feather fibres | 215, 450 | 15, 1.5 | 3 | 3.4 | 96.6 | [19] | |
Chicken feather fibres | 215, 450 | 15, 2.0 | 3 | 2.3 | 97.7 | [19] | |
Cock feathers | 400 | 0.5 | 10 | 32.8 | 21.0 | 46.2 | [21] |
Cock feathers | 500 | 0.5 | 10 | 26.6 | 23.3 | 50.1 | [21] |
Cock feathers | 600 | 0.5 | 10 | 25.1 | 25.2 | 49.7 | [21] |
Cock feathers | 700 | 0.5 | 10 | 22.9 | 27.9 | 49.2 | [21] |
Cock feathers | 400 | 0.5 | f | 29.7 | 19.4 | 50.9 | [21] |
Cock feathers | 500 | 0.5 | f | 21.2 | 22.4 | 56.4 | [21] |
Cock feathers | 600 | 0.5 | f | 19.9 | 25.7 | 54.4 | [21] |
Cock feathers | 700 | 0.5 | f | 16.9 | 29.9 | 53.2 | [21] |
Chicken feathers | 300 | 0.5 | nd | 55.8 | 44.2 | [22] | |
Chicken feathers | 300 | 0.5 | nd | 55.5 | 44.5 | [22] | |
Chicken feathers | 600 | 0.5 | nd | 25.3 | 74.7 | [22] | |
Chicken feathers | 600 | 0.5 | nd | 16.1 | 83.9 | [22] |
Sample | M | V | FC | Ash | C | H | S | LHV |
---|---|---|---|---|---|---|---|---|
wt% adb | MJ kg−1 | |||||||
PF | 7.8 | 74.5 | 16.3 | 1.4 | 33.3 | 6.9 | 2.30 | 20.3 |
LG | 5.4 | 52.3 | 37.0 | 5.3 | 58.1 | 5.4 | 0.99 | 21.0 |
Sample | C | H | S | LHV |
---|---|---|---|---|
wt% adb | MJ kg−1 | |||
CH.PF.700.1 | 67.7 | 3.7 | 0.6 | 26.1 |
CH.LG.700.1 | 71.4 | 3.1 | 1.2 | 25.6 |
CH.5PF:95LG.500.1 | 66.5 | 3.9 | 1.0 | 22.9 |
CH.5PF:95LG.600.1 | 67.5 | 3.4 | 1.2 | 23.6 |
CH.5PF:95LG.700.1 | 71.0 | 2.3 | 1.4 | 25.7 |
CH.5PF:95LG.700.1 (C) | 71.2 | 3.1 | 1.1 | 25.6 |
CH.5PF:95LG.700.5 | 72.6 | 2.9 | 1.4 | 26.4 |
CH.5PF:95LG.700.10 | 72.8 | 3.5 | 1.2 | 27.2 |
CH.5PF:95LG.800.1 | 74.2 | 2.1 | 1.7 | 26.0 |
CH.20PF:80LG.700.1 | 71.9 | 2.9 | 1.1 | 26.2 |
CH.20PF:80LG.700.1 (C) | 70.7 | 3.2 | 1.0 | 25.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czajka, K.M.; Skrzypa, J.; Kisiela-Czajka, A.M.; Kufka, D.; Rogosz, B. Valorisation of Poultry Feathers Through Pyrolysis: A Pilot-Scale Waste-to-Energy Approach. Energies 2025, 18, 5188. https://doi.org/10.3390/en18195188
Czajka KM, Skrzypa J, Kisiela-Czajka AM, Kufka D, Rogosz B. Valorisation of Poultry Feathers Through Pyrolysis: A Pilot-Scale Waste-to-Energy Approach. Energies. 2025; 18(19):5188. https://doi.org/10.3390/en18195188
Chicago/Turabian StyleCzajka, Krzysztof M., Janusz Skrzypa, Anna M. Kisiela-Czajka, Dominika Kufka, and Barbara Rogosz. 2025. "Valorisation of Poultry Feathers Through Pyrolysis: A Pilot-Scale Waste-to-Energy Approach" Energies 18, no. 19: 5188. https://doi.org/10.3390/en18195188
APA StyleCzajka, K. M., Skrzypa, J., Kisiela-Czajka, A. M., Kufka, D., & Rogosz, B. (2025). Valorisation of Poultry Feathers Through Pyrolysis: A Pilot-Scale Waste-to-Energy Approach. Energies, 18(19), 5188. https://doi.org/10.3390/en18195188