Production of Compacted Biofuels in Terms of Their Quality—Current State of Research
Abstract
1. Introduction
1.1. The Potential of Solid Biofuels
1.2. Classification of Solid Biofuels
2. Materials and Methods
3. Results
3.1. Results of Bibliometric Analysis
- Dark blue/blue/light blue—low co-occurrence.
- Green—medium co-occurrence.
- Yellow—high co-occurrence.
3.2. Pressure Compaction
- Volume reduction;
- Density maximization;
- Uniform dose composition;
- Storage cost reduction;
- Simplified storage;
- Reduction in the amount of dust;
- Transport cost reduction.
3.3. Intermolecular Connections and Factors Influencing Them
3.4. Factors Influencing the Pressure Compaction Process
3.4.1. Pressure
3.4.2. Moisture Content
3.4.3. Temperature of the Compaction Process
3.4.4. Natural Binders Used for Biomass Densification
3.4.5. Compaction Process Speed
3.4.6. Fraction Size
3.4.7. Friction Coefficient
3.4.8. Die Geometry
3.5. Compaction Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Francik, S.; Knapczyk, A.; Francik, R.; Ślipek, Z. Analysis of Possible Application of Olive Pomace as Biomass Source; Springer: Cham, Switzerland, 2018; pp. 583–592. [Google Scholar]
- Francik, S.; Knapik, P.; Łapczyńska-Kordon, B.; Francik, R.; Ślipek, Z. Values of Selected Strength Parameters of Miscanthus × Giganteus Stalk Depending on Water Content and Internode Number. Materials 2022, 15, 1480. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, L.; Wei, Z.; Liang, J.; Lin, Z.; Evrendilek, F.; He, Y.; Ninomiya, Y.; Xie, W.; Sun, S.; et al. CO2-Induced Co-Pyrolysis of Pennisetum Hydridum and Waste Tires: Multi-Objective Optimization of Its Synergies and Pyrolytic Oil, Char and Gas Outputs. Energy 2025, 317, 134670. [Google Scholar] [CrossRef]
- Knapczyk, A.; Francik, S.; Jewiarz, M.; Zawiślak, A.; Francik, R. Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case. Energies 2020, 14, 162. [Google Scholar] [CrossRef]
- Francik, S.; Knapczyk, A.; Knapczyk, A.; Francik, R. Decision Support System for the Production of Miscanthus and Willow Briquettes. Energies 2020, 13, 1364. [Google Scholar] [CrossRef]
- Mišljenović, N.; Čolović, R.; Vukmirović, Đ.; Brlek, T.; Bringas, C.S. The Effects of Sugar Beet Molasses on Wheat Straw Pelleting and Pellet Quality. A Comparative Study of Pelleting by Using a Single Pellet Press and a Pilot-Scale Pellet Press. Fuel Process. Technol. 2016, 144, 220–229. [Google Scholar] [CrossRef]
- Hill, B.; Pulkinen, D.A. A Study of Factors Affecting Pellet Durability and Pelleting Efficiency in the Production of Dehydrated Alfalfa Pellets; A Special Report; Agriculture Development Fund: Riyadh, Saudi Arabia, 1988. [Google Scholar]
- Kuboń, M.; Skibko, Z.; Borusiewicz, A.; Romaniuk, W.; Gajda, J.S.; Kłosowska, O.; Wasąg, Z. Influence of the Parameters of an Agricultural Biogas Plant on the Amount of Power Generated. Appl. Sci. 2024, 14, 4200. [Google Scholar] [CrossRef]
- Jewiarz, M.; Wróbel, M.; Mudryk, K.; Szufa, S. Impact of the Drying Temperature and Grinding Technique on Biomass Grindability. Energies 2020, 13, 3392. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Shang, L.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B. From a Single Pellet Press to a Bench Scale Pellet Mill—Pelletizing Six Different Biomass Feedstocks. Fuel Process. Technol. 2016, 142, 27–33. [Google Scholar] [CrossRef]
- Szufa, S.; Piersa, P.; Adrian, Ł.; Czerwińska, J.; Lewandowski, A.; Lewandowska, W.; Sielski, J.; Dzikuć, M.; Wróbel, M.; Jewiarz, M.; et al. Sustainable Drying and Torrefaction Processes of Miscanthus for Use as a Pelletized Solid Biofuel and Biocarbon-Carrier for Fertilizers. Molecules 2021, 26, 1014. [Google Scholar] [CrossRef]
- Angulo-Mosquera, L.S.; Alvarado-Alvarado, A.A.; Rivas-Arrieta, M.J.; Cattaneo, C.R.; Rene, E.R.; García-Depraect, O. Production of Solid Biofuels from Organic Waste in Developing Countries: A Review from Sustainability and Economic Feasibility Perspectives. Sci. Total Environ. 2021, 795, 148816. [Google Scholar] [CrossRef]
- Kożuch, A.; Cywicka, D.; Adamowicz, K.; Wieruszewski, M.; Wysocka-Fijorek, E.; Kiełbasa, P. The Use of Forest Biomass for Energy Purposes in Selected European Countries. Energies 2023, 16, 5776. [Google Scholar] [CrossRef]
- Musiał, W.; Zioło, M.; Luty, L.; Musiał, K. Energy Policy of European Union Member States in the Context of Renewable Energy Sources Development. Energies 2021, 14, 2864. [Google Scholar] [CrossRef]
- Obidziński, S. Analysis of Usability of Potato Pulp as Solid Fuel. Fuel Process. Technol. 2012, 94, 67–74. [Google Scholar] [CrossRef]
- Obidziński, S.; Hejft, R. Badanie Nacisków Wywieranych Przez Materiał Na Ściankę Otwartej Komory Zagęszczania. Inżynieria Rol. 2012, 3, 175–184. [Google Scholar]
- Szyszlak-Bargłowicz, J.; Słowik, T.; Zając, G.; Blicharz-Kania, A.; Zdybel, B.; Andrejko, D.; Obidziński, S. Energy Parameters of Miscanthus Biomass Pellets Supplemented with Copra Meal in Terms of Energy Consumption during the Pressure Agglomeration Process. Energies 2021, 14, 4167. [Google Scholar] [CrossRef]
- Obidziński, S.; Piekut, J.; Dec, D. The Influence of Potato Pulp Content on the Properties of Pellets from Buckwheat Hulls. Renew. Energy 2016, 87, 289–297. [Google Scholar] [CrossRef]
- Hejft, R.; Obidziński, S. Ciśnieniowa Aglomeracja Materiałów Roślinnych—Innowacje Technologiczno-Techniczne. Część 1. J. Res. Appl. Agric. Eng. 2012, 57, 63–65. [Google Scholar]
- Iryani, D.A.; Halimatuzzahra, H.; Taharuddin, T.; Haryanto, A.; Hidayat, W.; Hasanudin, U. Physicochemical Characterization of Wood Mixed with Coffee Waste Pellet. IOP Conf. Ser. Earth Environ. Sci. 2023, 1187, 012007. [Google Scholar] [CrossRef]
- Kong, X.; Cao, Q.; Niu, Z. Experimental Research on Breakage Characteristics of Feed Pellets under Different Loading Methods. Agriculture 2024, 14, 1401. [Google Scholar] [CrossRef]
- Mitrus, M.; Tydman, K.; Milanowski, M.; Soja, J.; Lewko, P.; Kupryaniuk, K.; Wójtowicz, A. Influence of the Forming Die Design on Processing and Physical Properties of Gluten-Free Crisps. Agric. Eng. 2024, 28, 87–96. [Google Scholar] [CrossRef]
- Mitrus, M.; Combrzyński, M.; Biernacka, B.; Wójtowicz, A.; Milanowski, M.; Kupryaniuk, K.; Gancarz, M.; Soja, J.; Różyło, R. Fresh Broccoli in Fortified Snack Pellets: Extrusion-Cooking Aspects and Physical Characteristics. Appl. Sci. 2023, 13, 8138. [Google Scholar] [CrossRef]
- Priese, F.; Wiegel, D.; Funaro, C.; Mondelli, G.; Wolf, B. Comparison of Mini-Tablets and Pellets as Multiparticulate Drug Delivery Systems for Controlled Drug Release. Coatings 2023, 13, 1891. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Combrzyński, M.; Biernacka, B.; Oniszczuk, T.; Mitrus, M.; Różyło, R.; Gancarz, M.; Oniszczuk, A. Application of Edible Insect Flour as a Novel Ingredient in Fortified Snack Pellets: Processing Aspects and Physical Characteristics. Processes 2023, 11, 2561. [Google Scholar] [CrossRef]
- PN-EN ISO 16559:2022-06; Biopaliwa Stałe—Terminologia. Polish Committee for Standardization: Warsaw, Poland, 2022.
- PN-EN ISO 17225-1:2021; Biopaliwa Stałe—Specyfikacje Paliw i Klasy—Część 1: Wymagania Ogólne. Polish Committee for Standardization: Warsaw, Poland, 2021.
- Francik, S.; Łapczyńska-Kordon, B.; Francik, R.; Wójcik, A. Modeling and Simulation of Biomass Drying Using Artificial Neural Networks. In Renewable Energy Sources: Engineering, Technology, Innovation: ICORES 2017; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 571–581. [Google Scholar]
- Francik, S.; Łapczyńska-Kordon, B.; Hajos, M.; Basista, G.; Zawiślak, A.; Francik, R. Modeling the Drying Process of Onion Slices Using Artificial Neural Networks. Energies 2024, 17, 3199. [Google Scholar] [CrossRef]
- Knapczyk, A.; Francik, S.; Fraczek, J.; Slipek, Z. Analysis of Research Trends in Production of Solid Biofuels. In Proceedings of the 18th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 22–24 May 2019; Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2019; Volume 18, pp. 1503–1509. [Google Scholar]
- Knapczyk, A.; Francik, S.; Pedryc, N.; Hebda, T. Bibliometric Analysis of Research Trends in Engineering for Rural Development. In Proceedings of the 17th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23–25 May 2018; pp. 700–707. [Google Scholar]
- Dołżyńska, M.; Obidziński, S.; Kowczyk-Sadowy, M.; Krasowska, M. Densification and Combustion of Cherry Stones. Energies 2019, 12, 3042. [Google Scholar] [CrossRef]
- Obidziński, S.; Dołżyńska, M.; Stasiełuk, W. Production of Fuel Pellets from a Mixture of Sawdust and Rye Bran. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 012073. [Google Scholar] [CrossRef]
- Obidziński, S.; Puchlik, M.; Dołżyńska, M. Pelletization of Post-Harvest Tobacco Waste and Investigation of Flue Gas Emissions from Pellet Combustion. Energies 2020, 13, 6002. [Google Scholar] [CrossRef]
- Dołżyńska, M.; Obidziński, S.; Piekut, J.; Yildiz, G. The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions. Energies 2020, 13, 5107. [Google Scholar] [CrossRef]
- Zawiślak, K.; Sobczak, P.; Kraszkiewicz, A.; Niedziółka, I.; Parafiniuk, S.; Kuna-Broniowska, I.; Tanaś, W.; Żukiewicz-Sobczak, W.; Obidziński, S. The Use of Lignocellulosic Waste in the Production of Pellets for Energy Purposes. Renew. Energy 2020, 145, 997–1003. [Google Scholar] [CrossRef]
- Wróbel, M. Zagęszczalność i Kompaktowalność Biomasy Celulozowej; Polskie Towarzystwo Inzynierii Rolniczej: Kraków, Poland, 2019; ISBN 978-83-64377-35-8. [Google Scholar]
- Pietsch, W. Agglomeration Processes: Phenomena, Technologies, Equipment; Wiley: Hoboken, NJ, USA, 2001; ISBN 9783527619801. [Google Scholar]
- Anglès, M.N.; Ferrando, F.; Farriol, X.; Salvadó, J. Suitability of Steam Exploded Residual Softwood for the Production of Binderless Panels. Effect of the Pre-Treatment Severity and Lignin Addition. Biomass Bioenergy 2001, 21, 211–224. [Google Scholar] [CrossRef]
- Bika, D.; Tardos, G.I.; Panmai, S.; Farber, L.; Michaels, J. Strength and Morphology of Solid Bridges in Dry Granules of Pharmaceutical Powders. Powder Technol. 2005, 150, 104–116. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Natural Binders and Solid Bridge Type Binding Mechanisms in Briquettes and Pellets Made from Corn Stover and Switchgrass. Bioresour. Technol. 2010, 101, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Kaliyan, N.; Vance Morey, R. Factors Affecting Strength and Durability of Densified Biomass Products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Križan, P.; Šooš, L.; Matúš, M.; Beniak, J.; Svátek, M. Research of Significant Densification Parameters Influence on Final Briquettes Quality. Wood Res. 2015, 60, 301–316. [Google Scholar]
- Skonecki, S. Modelowanie Ciśnieniowego Zagęszczania Materiałów Roślinnych; Wydaw. AR: Lublin, Poland, 2004; pp. 9–89. [Google Scholar]
- Tumuluru, J.S.; Wright, C.T.; Kenney, K.L.; Hess, J.R. A Technical Review on Biomass Processing: Densification, Preprocessing, Modeling, and Optimization. In Proceedings of the The 2010 ASABE Annual International Meeting, Pittsburgh, PA, USA, 20–23 June 2010. [Google Scholar]
- Hejft, R. Ciśnieniowa Aglomeracja Materiałów Roślinnych; Wydawnictwo i Zakład Poligrafii Instytutu Technologii Eksploatacji: Białystok, Poland, 2002. [Google Scholar]
- Križan, P. The Densification Process of Wood Waste; Capello, E., Boyd, M., Eds.; Walter de Gruyter GmbH & Co. KG: Berlin, Germany, 2015; ISBN 978-3-11-044001-0. [Google Scholar]
- Križan, P.; Matúš, M.; Šooš, J.; Beniak, J. Behavior of Beech Sawdust during Densification into a Solid Biofuel. Energies 2015, 8, 6382–6398. [Google Scholar] [CrossRef]
- Križan, P.; Svátek, M.; Matúš, M.; Beniak, J.; Lisý, M. Determination of Compacting Pressure and Pressing Temperature Impact on Biomass Briquettes Density and Their Mutual Interactions. In Proceedings of the 14th SGEM GeoConference on Energy and Clean Technologies, Albena, Bulgaria, 17–26 June 2014; pp. 133–140. [Google Scholar]
- Kulig, R.; Laskowski, J. The Effect of Preliminary Processing on Compaction Parameters of Oilseed Rape Straw. Teka Komisji Motoryzacji I Energetyki Rolnictwa 2011, 11, 209–217. [Google Scholar]
- Li, Y.; Liu, H. High-Pressure Densification of Wood Residues to Form an Upgraded Fuel. Biomass Bioenergy 2000, 19, 177–186. [Google Scholar] [CrossRef]
- Rhén, C.; Gref, R.; Sjöström, M.; Wästerlund, I. Effects of Raw Material Moisture Content, Densification Pressure and Temperature on Some Properties of Norway Spruce Pellets. Fuel Process. Technol. 2005, 87, 11–16. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.; Sanadi, A.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U. Fuel Pellets from Biomass: The Importance of the Pelletizing Pressure and Its Dependency on the Processing Conditions. Fuel 2011, 90, 3285–3290. [Google Scholar] [CrossRef]
- Wrobel, M.; Mudryk, K.; Jewiarz, M.; Knapczyk, A. Impact of Raw Material Properties and Agglomeration Pressure on Selected Parmeters of Granulates Obtained from Willow and Black Locust Biomass. In Proceedings of the 17th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23–25 May 2018; pp. 1933–1938. [Google Scholar]
- Wróbel, M.; Jewiarz, M.; Mudryk, K.; Knapczyk, A. Influence of Raw Material Drying Temperature on the Scots Pine (Pinus Sylvestris L.) Biomass Agglomeration Process—A Preliminary Study. Energies 2020, 13, 1809. [Google Scholar] [CrossRef]
- Mudryk, K.; Fraczek, J.; Wrobel, M.; Jewiarz, M. Pressure Agglomeration Herbaceous Raw Materials Intended for Consumer Purposes. In Proceedings of the 17th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23–25 May 2018. [Google Scholar]
- Jewiarz, M.; Mudryk, K.; Wróbel, M.; Frączek, J.; Dziedzic, K. Parameters Affecting RDF-Based Pellet Quality. Energies 2020, 13, 910. [Google Scholar] [CrossRef]
- Rahaman, S.A.; Salam, P.A. Characterization of Cold Densified Rice Straw Briquettes and the Potential Use of Sawdust as Binder. Fuel Process. Technol. 2017, 158, 9–19. [Google Scholar] [CrossRef]
- Križan, P. Research of Factors Influencing the Quality of Wood Briquets. Acta Montan. Slovaca 2007, 12, 223–230. [Google Scholar]
- Kulig, R.; Łysiak, G.; Skonecki, S.; Kobus, Z.; Rydzak, L.; Guz, T. Określenie Zależności Między Ciśnieniem a Parametrami Zagęszczania Wybranych Roślin Energetycznych. Motrol 2014, 16, 55–58. [Google Scholar]
- Zhang, J.; Guo, Y. Physical Properties of Solid Fuel Briquettes Made from Caragana Korshinskii Kom. Powder Technol. 2014, 256, 293–299. [Google Scholar] [CrossRef]
- Demirbas, A.; Sahin-Demirbas, A. Briquetting Properties of Biomass Waste Materials. Energy Sources 2004, 26, 83–91. [Google Scholar] [CrossRef]
- Li, C.; Chen, Z.; Wang, Q. Effect of Temperature on Densification Pressure and the Unit Density in Production of Corn Straw Pellet with a Post-Heating Method. Energies 2022, 15, 842. [Google Scholar] [CrossRef]
- Orisaleye, J.I.; Jekayinfa, S.O.; Adebayo, A.O.; Ahmed, N.A.; Pecenka, R. Effect of Densification Variables on Density of Corn Cob Briquettes Produced Using a Uniaxial Compaction Biomass Briquetting Press. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 3019–3028. [Google Scholar] [CrossRef]
- Zvicevičius, E.; Raila, A.; Čiplienė, A.; Černiauskienė, Ž.; Kadžiulienė, Ž.; Tilvikienė, V. Effects of Moisture and Pressure on Densification Process of Raw Material from Artemisia Dubia Wall. Renew. Energy 2018, 119, 185–192. [Google Scholar] [CrossRef]
- Granado, M.P.P.; Suhogusoff, Y.V.M.; Santos, L.R.O.; Yamaji, F.M.; De Conti, A.C. Effects of Pressure Densification on Strength and Properties of Cassava Waste Briquettes. Renew. Energy 2021, 167, 306–312. [Google Scholar] [CrossRef]
- Wongsiriamnuay, T.; Tippayawong, N. Effect of Densification Parameters on the Properties of Maize Residue Pellets. Biosyst. Eng. 2015, 139, 111–120. [Google Scholar] [CrossRef]
- Ismail, R.I.; Khor, C.Y.; Mohamed, A.R. Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya Senegalensis Biomass Energy Pellets. Sustainability 2023, 15, 7501. [Google Scholar] [CrossRef]
- Samuelsson, R.; Larsson, S.H.; Tyhrel, M.; Lestander, T.A. Moisture Content and Storage Time Influence the Binding Mechanisms in Biofuel Wood Pellets. Appl. Energy 2012, 99, 109–115. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. An Overview of Compaction of Biomass Grinds. Powder Handl. Process. 2003, 15, 160–168. [Google Scholar]
- Skonecki, S.; Kulig, R. Wpływ Wilgotności Biomasy Roślinnej i Nacisku Tłoka Na Parametry Brykietowania i Wytrzymałość Aglomeratu. Autobusy Tech. Eksploat. Syst. Transp. 2011, 10, 375–386. [Google Scholar]
- Sokhansanj, S.; Mani, S.; Bi, X.; Zaini, P.; Tabil, L. Binderless Pelletization of Biomass. In Proceedings of the 2005 ASAE Annual Meeting, Tampa, FL, USA, 17–20 July 2005; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005. [Google Scholar]
- Styks, J.; Wróbel, M.; Frączek, J.; Knapczyk, A. Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets. Energies 2020, 13, 1859. [Google Scholar] [CrossRef]
- Shaw, M.D.; Tabil, L.G. Compression and Relaxation Characteristics of Selected Biomassgrinds. In Proceedings of the 2007 ASAE Annual Meeting, Minneapolis, MN, USA, 17–20 June 2007; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2007. [Google Scholar]
- Laloon, K.; Junsiri, C.; Sanchumpu, P.; Ansuree, P. Factors Affecting the Biomass Pellet Using Industrial Eucalyptus Bark Residue. Biomass Convers. Biorefin. 2024, 14, 10101–10113. [Google Scholar] [CrossRef]
- Tumuluru, J.S. High-moisture Pelleting of Corn Stover Using Pilot- and Commercial-scale Systems: Impact of Moisture Content, L/D Ratio and Hammer Mill Screen Size on Pellet Quality and Energy Consumption. Biofuels Bioprod. Biorefining 2023, 17, 1156–1173. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Fillerup, E. Briquetting Characteristics of Woody and Herbaceous Biomass Blends: Impact on Physical Properties, Chemical Composition, and Calorific Value. Biofuels Bioprod. Biorefining 2020, 14, 1105–1124. [Google Scholar] [CrossRef]
- Bhattacharya, S.C.; Sivasakthy, S.; Shrestha, R.M. State of the Art for Biomass Densification. Energy Sources 1989, 11, 161–182. [Google Scholar] [CrossRef]
- Zabava, B.-S.; Voicu, G.; Dinca, M.-N.; Ungureanu, N.; Ferdes, M. Durability of Pellets Obtained from Energy Plants: Review. Eng. Rural Dev. 2018, 23, 1838–1843. [Google Scholar]
- Carone, M.T.; Pantaleo, A.; Pellerano, A. Influence of Process Parameters and Biomass Characteristics on the Durability of Pellets from the Pruning Residues of Olea europaea L. Biomass Bioenergy 2011, 35, 402–410. [Google Scholar] [CrossRef]
- Todaro, L.; Rita, A.; Cetera, P.; D’Auria, M. Thermal Treatment Modifies the Calorific Value and Ash Content in Some Wood Species. Fuel 2015, 140, 1–3. [Google Scholar] [CrossRef]
- Hall, G.E.; Hall, C.W. Heated-Die Wafer Formation of Alfalfa and Bermudagrass. Trans. ASAE 1968, 11, 0578–0581. [Google Scholar] [CrossRef]
- Smith, I.E.; Probert, S.D.; Stokes, R.E.; Hansford, R.J. The Briquetting of Wheat Straw. J. Agric. Eng. Res. 1977, 22, 105–111. [Google Scholar] [CrossRef]
- Tabil, L. Binding and Pelleting Characteristics of Alfalfa. Doctoral Dissertation, University of Saskatchewan, Saskatoon, SK, Canada, 2022. [Google Scholar]
- Kaliyan, N.; Morey, R.V. Densification Characteristics of Corn Stover and Switchgrass. Trans. ASABE 2009, 52, 907–920. [Google Scholar] [CrossRef]
- Kulig, R.; Skonecki, S.; Łysiak, G.; Laskowski, J.; Rudy, S.; Krzykowski, A.; Nadulski, R. The Effect of Pressure on the Compaction Parameters of Oakwood Sawdust Enhanced with a Binder. Teka Komisji Motoryzacji i Energetyki Rolnictwa 2013, 13, 83–88. [Google Scholar]
- Lautenschläger, K.H.; Schröter, W.; Wanninger, A. Nowoczesne Kompendium Chemii; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2007. [Google Scholar]
- Malinowski, E. Anatomia Roślin; PWN: Warszawa, Poland, 1966. [Google Scholar]
- Szweykowska, A.; Szweykowski, J. Słownik Botaniczny, 2nd ed.; Wiedza Powszechna: Warszawa, Poland, 2003. [Google Scholar]
- Gageanu, I.; Cujbescu, D.; Persu, C.; Tudor, P.; Cardei, P.; Matache, M.; Vladut, V.; Biris, S.; Voicea, I.; Ungureanu, N. Influence of Input and Control Parameters on the Process of Pelleting Powdered Biomass. Energies 2021, 14, 4104. [Google Scholar] [CrossRef]
- Taulbee, D.; Patil, D.P.; Honaker, R.Q.; Parekh, B.K. Briquetting of Coal Fines and Sawdust Part I: Binder and Briquetting-Parameters Evaluations. Int. J. Coal Prep. Util. 2009, 29, 1–22. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Sokhansanj, S.; Lim, C.J.; Bi, T.; Lau, A.; Melin, S.; Sowlati, T.; Oveisi, E. Quality of Wood Pellets Produced in British Columbia for Export. Appl. Eng. Agric. 2010, 26, 1013–1020. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A Review of Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application. Biofuels Bioprod. Biorefining 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Kirsten, C.; Lenz, V.; Schröder, H.-W.; Repke, J.-U. Hay Pellets—The Influence of Particle Size Reduction on Their Physical–Mechanical Quality and Energy Demand during Production. Fuel Process. Technol. 2016, 148, 163–174. [Google Scholar] [CrossRef]
- Setter, C.; Ataíde, C.H.; Mendes, R.F.; de Oliveira, T.J.P. Influence of Particle Size on the Physico-Mechanical and Energy Properties of Briquettes Produced with Coffee Husks. Environ. Sci. Pollut. Res. 2021, 28, 8215–8223. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, K.; Sun, Y. Effects of Raw Material Particle Size on the Briquetting Process of Rice Straw. J. Energy Inst. 2018, 91, 153–162. [Google Scholar] [CrossRef]
- Kronbergs, E. Mechanical Strength Testing of Stalk Materials and Compacting Energy Evaluation. Ind. Crops Prod. 2000, 11, 211–216. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, S.; Sokhansanj, S. Effects of Compressive Force, Particle Size and Moisture Content on Mechanical Properties of Biomass Pellets from Grasses. Biomass Bioenergy 2006, 30, 648–654. [Google Scholar] [CrossRef]
- Peleg, M.; Mannheim, C.H. Effect of Conditioners on the Flow Properties of Powdered Sucrose. Powder Technol. 1973, 7, 45–50. [Google Scholar] [CrossRef]
- Obidziński, S. Granulowanie Materiałów Roślinnych w Pierścieniowym Układzie Roboczym Granulatora; Politechnika Białostocka: Białystok, Poland, 2005. [Google Scholar]
- Yang, Y.; Zhang, M.; Wang, D. A Comprehensive Investigation on the Effects of Biomass Particle Size in Cellulosic Biofuel Production. J. Energy Resour. Technol. 2018, 140, 041804. [Google Scholar] [CrossRef]
- Frączek Jarosław and Wróbel, M. Analyse of Possibility of Application of Existing Models for Description of Plant Granular Materials. Acta Agrophysica 2003, 2003, 83–92. [Google Scholar]
- Kabas, O.; Ozmerzi, A. Relationship between the Friction Coefficient and Velocity of Two Cactus Pear Opuntia Ficus India Cultivars on Different Surfaces. Int. J. Food Sci. Technol. 2009, 44, 100–105. [Google Scholar] [CrossRef]
- Kalkan, F.; Kara, M. Handling, Frictional and Technological Properties of Wheat as Affected by Moisture Content and Cultivar. Powder Technol. 2011, 213, 116–122. [Google Scholar] [CrossRef]
- Koval’chenko, M.S. Effects of External Friction upon the Rate of Densification of a Viscous Porous Solid in Hot Pressing. Sov. Powder Metall. Met. Ceram. 1975, 14, 534–537. [Google Scholar] [CrossRef]
- Markowski, M.; Żuk-Gołaszewska, K.; Kwiatkowski, D. Influence of Variety on Selected Physical and Mechanical Properties of Wheat. Ind. Crops Prod. 2013, 47, 113–117. [Google Scholar] [CrossRef]
- Sologubik, C.A.; Campañone, L.A.; Pagano, A.M.; Gely, M.C. Effect of Moisture Content on Some Physical Properties of Barley. Ind. Crops Prod. 2013, 43, 762–767. [Google Scholar] [CrossRef]
- Wójcik, A.; Frączek, J.; Niemczewska-Wójcik, M. The Relationship between Static and Kinetic Friction for Plant Granular Materials. Powder Technol. 2020, 361, 739–747. [Google Scholar] [CrossRef]
- Wójcik, A.; Frączek, J.; Wota, A.K. The Methodical Aspects of the Friction Modeling of Plant Granular Materials. Powder Technol. 2019, 344, 504–513. [Google Scholar] [CrossRef]
- Markowska, A.; Warechowska, M.; Warechowski, J. Influence of Moisture on External Friction Coefficient and Basic Physical Properties of Astoria Variety Wheat Grain. Tech. Sci. 2016, 19, 17–26. [Google Scholar]
- Nielsen, K.; Gardner, D.; Poulsen, T.; Felby, C. Importance of Temperature, Moisture Content, and Species for the Conversion Process of Wood Residues into Fuel Pellets. Wood Fiber Sci. 2009, 41, 414–425. [Google Scholar]
- Križan, P. The Effects of the Pressing Chamber Design Parameters on the Quality of Extrusions. In Biomass Compaction; Springer International Publishing: Cham, Switzerland, 2022; pp. 65–87. [Google Scholar]
- Winter, E. Fundamental Considerations for Preparing Densified Refuse-Derived Fuel; United States Environmental Protection Agency: Cincinnati, OH, USA, 1981. [Google Scholar]
- Hu, J.; Lei, T.; Shen, S.; Zhang, Q. Specific Energy Consumption Regression and Process Parameters Optimization in Wet-Briquetting of Rice Straw at Normal Temperature. Bioresources 2012, 8, 663–675. [Google Scholar] [CrossRef]
- Wu, K.; Shi, S.J.; Wang, Y.L.; Peng, B. Bin FEA Simulation of Extruding Feed through Die Hole in Pelleting Process. Appl. Mech. Mater. 2011, 109, 350–354. [Google Scholar] [CrossRef]
- Współczynnik Sprężu. Available online: http://pelet.atlibron.com/ (accessed on 3 March 2025).
- Holm, J.K.; Henriksen, U.B.; Hustad, J.E.; Sørensen, L.H. Toward an Understanding of Controlling Parameters in Softwood and Hardwood Pellets Production. Energy Fuels 2006, 20, 2686–2694. [Google Scholar] [CrossRef]
- Heffner, L.E.; Pfost, H.B. Gelatinization during Pelleting. Tec. Molit. 2012, 26, 102–104. [Google Scholar]
- Butler, J.L.; McColly, H.F. Factors Affecting the Pelleting of Hay; Michigan State University of Agriculture and Applied Science, Department of Agricultural Engineering: East Lansing, MI, USA, 1958. [Google Scholar]
- Križan, P.; Šooš, Ľ.; Matúš, M. Optimalisation of Briquetting Machine Pressing Chamber Geometry. Mach. Des. 2010, 1259, 19–24. [Google Scholar]
- Styks, J.; Wróbel, M. Modular Open Chamber Stand for Biomass Densification Using the Example of Miscanthus × Giganteus Greef Et Deu. Sustainability 2024, 16, 7123. [Google Scholar] [CrossRef]
- Dao, C.N.; Salam, A.; Kim Oanh, N.T.; Tabil, L.G. Effects of Length-to-Diameter Ratio, Pinewood Sawdust, and Sodium Lignosulfonate on Quality of Rice Straw Pellets Produced via a Flat Die Pellet Mill. Renew. Energy 2022, 181, 1140–1154. [Google Scholar] [CrossRef]
- Viswanathan, R.; Gothandapani, L. Pressure Density Relationships and Stress Relaxation Characteristics of Coir Pith. J. Agric. Eng. Res. 1999, 73, 217–225. [Google Scholar] [CrossRef]
- Ferrero, A.; Horabik, J.; Molenda, M. Density-Pressure Relationships in Compaction of Straw. 1991. Available online: https://www.researchgate.net/publication/271074785_Density_-_pressure_relationship_in_compaction_of_straw (accessed on 5 March 2025).
- Faborode, M.O.; O’Callaghan, J.R. A Rheological Model for the Compaction of Fibrous Agricultural Materials. J. Agric. Eng. Res. 1989, 42, 165–178. [Google Scholar] [CrossRef]
- O’Dogherty, M.J.; Wheeler, J.A. Compression of Straw to High Densities in Closed Cylindrical Dies. J. Agric. Eng. Res. 1984, 29, 61–72. [Google Scholar] [CrossRef]
- Walker, E.E. The Properties of Powders. Part VI. The Compressibility of Powders. Trans. Faraday Soc. 1923, 19, 73. [Google Scholar] [CrossRef]
- Kawakita, K.; Lüdde, K.-H. Some Considerations on Powder Compression Equations. Powder Technol. 1971, 4, 61–68. [Google Scholar] [CrossRef]
- Shapiro, I. Compaction of Powders X. Development of a General Compaction Equation. Adv. Powder Metall. Part. Mater. 1993, 3, 229–243. [Google Scholar]
- Jones, W.D. Fundamental Principles of Powder Metallurgy; Edward Arnold: London, UK, 1960. [Google Scholar]
- Bilanski, W.; Graham, V.; Hanusiak, J. Mechanics of Bulk Forage Deformation with Application to Wafering. Trans. ASAE 1985, 28, 697–702. [Google Scholar] [CrossRef]
- Afzalinia, S.; Roberge, M. Modeling of the Pressure-Density Relationship in a Large Cubic Baler. J. Agric. Sci. Technol. 2013, 15, 35–44. [Google Scholar]
- PN-EN ISO 17225-2:2021-10; Biopaliwa Stałe—Specyfikacje Paliw i Klasy—Część 2: Klasy Peletów Drzewnych. PKN: Warszawa, Poland, 2021.
- PN-EN ISO 17225-6:2021-12; Biopaliwa Stałe—Specyfikacje Paliw i Klasy—Część 6: Klasy Peletów Niedrzewnych. PKN: Warszawa, Poland, 2021.
Material | Pressure Value [MPa] | Author |
---|---|---|
Rice straw | 34.5 | Rahaman and Salam [58] |
Wood biomass | 286 | Križan [59] |
Wood biomass | 45–96 | Kulig et al. [60] |
Caragana korshinskii | 50–110 | Zhang and Guo [61] |
Spruce wood sawdust | 300–800 | Demirbas and Sahin-Demirbas [62] |
Wood residues | 138 | Li and Liu [51] |
Corn straw | ~90 | Li et al. [63] |
Corn cob | 9–15 | Orisaleye et al. [64] |
Artemisia dubia Wall | 156–780 | Zvicevičius et al. [65] |
Cassava | 102–204 | Granado et al. [66] |
Maize residues | 150–250 | Wongsiriamnuay and Tippayawong [67] |
Khaya senegalensis | 57–66 | Ismail et al. [68] |
Material | Moisture Content [%] | Author |
---|---|---|
Oak Pine Poplar | 8 | Li [51] |
Scots pine Pinus sylvestris L. | 11–13 | Samuelsson et al. [69] |
Biomass | 5–10 | Mani et al. [70] |
Wheat straw, Willow | 10–18 | Skonecki and Kulig [71] |
Biomass | 8–12 | Shahab Sokhansanj et al. [72] |
Eucalyptus | 18–27 | Laloon et al. [75] |
Corn stover | 29 | Tumuluru [76] |
Pine Switchgrass Corn stover | 12–18 | Tumuluru and Fillerup [77] |
Artemisia dubia Wall | 4.3–21.5 | Zvicevičius et al. [65] |
Material | Temperature [°C] | Author |
---|---|---|
European olive | 60; 90; 120; 150 | Carone et al. [80] |
Wood biomass | 110; 160; 190 | Todaro et al. [81] |
Norway spruce | 26–144 | Rhen et al. [52] |
Alfalfa and bermudagrass | 33; 99; 166 | Hall [82] |
Wheat straw | 60–140 | Smith et al. [83] |
Biomass | 90 | Tabil [84] |
Corn stover and switchgrass | 75–150 | Kaliyan and Morey [85] |
Maize residue | 30–80 | Wongsiriamnuay and Tippayawong [67] |
Khaya senegalensis | 125 | Ismail et al. [68] |
Corn straw | 140 | Li et al. [63] |
Corn cob | 90–120 | Orisaleye et al. [64] |
Material | Rotation [rpm] | Speed [mm/s] | Author |
---|---|---|---|
Eucalyptus | 250; 275; 300 | Laloon et al. [75] | |
Plum stones | 170; 220; 270 | Dołżyńska et al. [35] | |
Fir sawdust | 1.3; 2.1; 2.8 | Gageanu et al. [90] | |
Tabacco waste | 120; 170; 220 | Obidziński et al. [34] | |
Copra meal | 260 | Szyszlak-Bargłowicz et al. [17] |
Material | Particle Size [mm] | Author |
---|---|---|
Alfalfa | 2.8–6.4 | Hill and Pulkinen [7] |
Straw | 1.5–20 | Kronbergs [97] |
Wheat straw Corn straw Barley straw | 0.8–3.2 | Mani et al. [98] |
Wheat straw Corn stover | 1–4 | Yang et al. [101] |
Oat bran Potato pulp | 0.5–2.5 | Obidziński [100] |
Material | Friction Coefficient | Surface Material | Author |
---|---|---|---|
Barley | 0.24–0.39 | Plywood | Sologubik et al. [107] |
0.29–0.40 | Galvanized steel | ||
0.25–0.39 | Aluminum | ||
Wheat grain | 0.443 | Polypropylene | Markowska et al. [110] |
0.782 | Rubber | ||
Peas | 0.262 | Metal | Wójcik et al. [108,109] |
Maize | 0.697 | Metal | |
Triticale | 1.157 | Metal | |
Opuntia ficus india cultivars | 0.354 | Plywood | Kabas and Ozmerzi [103] |
0.260 | Paper | ||
0.220 | Galvanized steel | ||
0.659 | Rubber |
Material | Angle | Inlet Diameter [mm] | L/D Ratio 1 | Author |
---|---|---|---|---|
Wood biomass | 60° | Nielsen [111] | ||
Wood biomass | 1°; 4°; 6°; 9°; 11° | Križan et al. [43,48,59,112] | ||
RDF | 0°; 4°; 14°; 28° | Winter [113] | ||
Wheat straw | 37.6° | Mišljenović et al. [6] | ||
Rice straw | 29.5–60.5° | Hu et al. [114] | ||
Biomass | 6.4; 7.2 | Tumuluru et al. [93] | ||
Alfalfa | 8–10 | Hill and Pulkinen [7] | ||
Corn stover | 5–9 | Tumuluru [76] | ||
Rice straw | 6 and 10 | Dao et al. [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Styks, J.; Wróbel, M.; Francik, S. Production of Compacted Biofuels in Terms of Their Quality—Current State of Research. Energies 2025, 18, 3468. https://doi.org/10.3390/en18133468
Styks J, Wróbel M, Francik S. Production of Compacted Biofuels in Terms of Their Quality—Current State of Research. Energies. 2025; 18(13):3468. https://doi.org/10.3390/en18133468
Chicago/Turabian StyleStyks, Jakub, Marek Wróbel, and Sławomir Francik. 2025. "Production of Compacted Biofuels in Terms of Their Quality—Current State of Research" Energies 18, no. 13: 3468. https://doi.org/10.3390/en18133468
APA StyleStyks, J., Wróbel, M., & Francik, S. (2025). Production of Compacted Biofuels in Terms of Their Quality—Current State of Research. Energies, 18(13), 3468. https://doi.org/10.3390/en18133468