Improvement of Modified Rotor on Aerodynamic Performance of Hybrid Vertical Axis Wind Turbine
Abstract
1. Introduction
2. Research Modeling
2.1. Geometric Modeling
2.2. Theoretical Equation
3. Numerical Method
3.1. Computational Domain
3.2. Simulation Settings
3.2.1. Boundary Condition
3.2.2. Solver Settings
3.2.3. Convergence Criterion
3.3. Evaluation of the Simulation Model
3.3.1. Verification of Grid Independence
3.3.2. Time-Step Independence Validation
3.3.3. Validation of the Model
4. Result Analysis
4.1. Conventional Hybrid Wind Turbines
4.2. Hybrid Wind Turbines with Modified Inner Rotor
4.2.1. Torque Coefficient (Cm)
4.2.2. Power (Cp)
4.3. Wake Characteristics
5. Conclusions
- At lower tip–speed ratios, the presence of the inner rotor leads to hysteresis in the performance of the outer rotor and improves the performance of the outer rotor in the leeward zone, increasing the torque coefficient tremendously compared to the vertical-axis wind turbine, while decreasing it by only 4% at the maximum compared to the conventional composite vertical-axis wind turbine. However, the hysteresis effect gradually disappears as the blade tip–speed ratio increases.
- Hybrid vertical-axis wind turbines with modified inner rotor can improve the performance degradation of conventional hybrid generators at high blade tip ratios, with smaller counterpressure differentials than conventional inner rotors, which appropriately reduces inner rotor drag at high blade tip ratios, with torque coefficients increasing by up to 41.5%, and average torque coefficients increasing by 7.4%, which improves overall self-starting performance.
- The inner rotor with a spoiler boosts the average power coefficient by 80% compared to the conventional Savonius-type, reducing negative torque and strengthening the turbine’s overall power, with a maximum improvement of 32.4% and an 11.3% rise in the average power coefficient. The enhanced inner rotor also generates less turbulence, minimizing outer rotor impact and indirectly improving overall turbine performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, J.W.; Wei, J.H.; Li, X. Potential assessment and spatio-temporal pattern of solar-wind power generation in Qinghai province. J. Sol. Energy 2023, 44, 255–265. [Google Scholar] [CrossRef]
- Wang, C. Evaluation methods and potential analysis of renewable energy resources. Mod. Ind. Econ. Inform. 2023, 13, 155–156+159. [Google Scholar] [CrossRef]
- Hand, B.; Cashman, A. A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application. Sustain. Energy Technol. Assess. 2020, 38, 100646. [Google Scholar] [CrossRef]
- Wang, C.C.; Du, Q.P.; Wang, X.; Wang, D.M.; Shi, L.; Li, X. A Review of Foreign Policies on Renewable Energy. North China Electr. Power Technol. 2017, 65–70. [Google Scholar] [CrossRef]
- McKay, P.; Carriveau, R.; Ting, D.S.K. Wake impacts on downstream wind turbine performance and yaw alignment. Wind Energy 2013, 16, 221–234. [Google Scholar] [CrossRef]
- Ullah, T.; Sobczak, K.; Liśkiewicz, G.; Khan, A. Two-Dimensional URANS Numerical Investigation of Critical Parameters on a Pitch Oscillating VAWT Airfoil under Dynamic Stall. Energies 2022, 15, 5625. [Google Scholar] [CrossRef]
- Zhang, S.B.; Zhu, S.G.; Tao, D.X.; Zhang, G.X.; Lu, J. A Review of Large-scale Wind Turbine Technology. Henan Sci. Technol. 2023, 42, 17–21. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Zhuang, M. Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method. Energy Convers. Manag. 2018, 177, 107–121. [Google Scholar] [CrossRef]
- Chong, W.T.; Muzammil, W.K.; Wong, K.H.; Wang, C.T.; Gwani, M.; Chu, Y.J.; Poh, S.C. Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design. Appl. Energy 2017, 207, 78–95. [Google Scholar] [CrossRef]
- Gao, Q.; Lian, S.; Yan, H. Aerodynamic performance analysis of adaptive drag-lift hybrid type vertical Axis wind turbine. Energies 2022, 15, 5600. [Google Scholar] [CrossRef]
- Zhang, H.J.; Huang, D.G.; Wu, G.Q.; Wang, Y.D. Research on the Mutual Interference between Blades and vortices of Lift-Drag Composite Vertical-axis Wind Turbines. Mech. Des. Manuf. 2014, 76–79. [Google Scholar] [CrossRef]
- Qu, J.J.; Wang, J.Y.; Zhao, Y.; Zhang, L. The influence of drag blades on the aerodynamic performance of lift-drag composite vertical axis Wind turbines. J. Drain. Irrig. Mach. Eng. 2018, 36, 223–229. [Google Scholar]
- Zhao, Z.Z.; Chen, J.R.; Wang, T.G.; Li, T.; Zheng, Y. Research on the Influence of Interfering Airflow on the Aerodynamic Characteristics of Φ Type Wind Turbines. J. Mech. Eng. 2016, 52, 181–187. [Google Scholar] [CrossRef]
- Ghafoorian, F.; Mirmotahari, S.R.; Eydizadeh, M.; Mehrpooya, M. A systematic investigation on the hybrid Darrieus-Savonius vertical axis wind turbine aerodynamic performance and self-starting capability improvement by installing a curtain. Next Energy 2025, 6, 100203. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Liu, W.; Zhu, J.; Yan, Y.; Zhao, H. Optimization of the energy capture performance of the lift-drag hybrid vertical-axis wind turbine based on the Taguchi experimental method and CFD simulation. Sustainability 2023, 15, 8848. [Google Scholar] [CrossRef]
- Hosseini, A.; Goudarzi, N. Design and CFD study of a hybrid vertical-axis wind turbine by employing a combined Bach-type and H-Darrieus rotor systems. Energy Convers. Manag. 2019, 189, 49–59. [Google Scholar] [CrossRef]
- Ahmad, M.; Shahzad, A.; Akram, F.; Ahmad, F.; Shah, S.I.A. Design optimization of Double-Darrieus hybrid vertical axis wind turbine. Ocean Eng. 2022, 254, 111171. [Google Scholar] [CrossRef]
- Chegini, S.; Asadbeigi, M.; Ghafoorian, F.; Mehrpooya, M. An investigation into the self-starting of darrieus-savonius hybrid wind turbine and performance enhancement through innovative deflectors: A CFD approach. Ocean Eng. 2023, 287, 115910. [Google Scholar] [CrossRef]
- Kortleven, M. Simulation Verification and Optimization of a Vertical Axis Wind Turbine Using CFD; Delft University of Technology: Delft, The Netherlands, 2016. [Google Scholar]
- Maalouly, M.; Souaiby, M.; ElCheikh, A.; Issa, J.S.; Elkhoury, M. Transient analysis of H-type vertical axis wind turbines using CFD. Energy Rep. 2022, 8, 4570–4588. [Google Scholar] [CrossRef]
- Samaouali, A.; Kadiri, I. CFD comparison of 2D and 3D aerodynamics in H-Darrieus prototype wake. e-Prime-Adv. Electr. Eng. Electron. Energy 2023, 4, 100178. [Google Scholar] [CrossRef]
- ul Hassan, S.S.; Javaid, M.T.; Rauf, U.; Nasir, S.; Shahzad, A.; Salamat, S. Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles. Energy 2023, 270, 126978. [Google Scholar] [CrossRef]
- Posa, A. Dependence of the wake recovery downstream of a Vertical Axis Wind Turbine on its dynamic solidity. J. Wind Eng. Ind. Aerodyn. 2020, 202, 104212. [Google Scholar] [CrossRef]
- Posa, A. Secondary flows in the wake of a vertical axis wind turbine of solidity 0.5 working at a tip speed ratio of 2.2. J. Wind Eng. Ind. Aerodyn. 2021, 213, 104621. [Google Scholar] [CrossRef]
- Alexander, A.S.; Santhanakrishnan, A. Mechanisms of power augmentation in two side-by-side vertical axis wind turbines. Renew. Energy 2020, 148, 600–610. [Google Scholar] [CrossRef]
- Tong, G.; Li, Y.; Tagawa, K.; Feng, F. Effects of blade airfoil chord length and rotor diameter on aerodynamic performance of straight-bladed vertical axis wind turbines by numerical simulation. Energy 2023, 265, 126325. [Google Scholar] [CrossRef]
- Castelli, M.R.; Ardizzon, G.; Battisti, L.; Benini, E.; Pavesi, G. Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine. In Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, Princeton, NJ, USA, 12–18 November 2010; Volume 7, pp. 409–418. [Google Scholar] [CrossRef]
- Balduzzi, F.; Bianchini, A.; Maleci, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind turbines. Renew. Energy 2016, 85, 419–435. [Google Scholar] [CrossRef]
- Shukla, S.; Ramanan, C.J.; Bora, B.J.; Deo, A.; Alom, N. Numerical analysis of vertical axis wind turbine blades in ANSYS Fluent. Mater. Today Proc. 2022, 59, 1781–1785. [Google Scholar] [CrossRef]
- Khan, A.; Irfan, M.; Niazi, U.M.; Shah, I.; Legutko, S.; Rahman, S.; Alwadie, A.S.; Jalalah, M.; Glowacz, A.; Khan, M.K. Centrifugal Compressor Stall Control by the Application of Engineered Surface Roughness on Diffuser Shroud Using Numerical Simulations. Materials 2021, 14, 2033. [Google Scholar] [CrossRef]
- Hijazi, A.; ElCheikh, A.; Elkhoury, M. Numerical investigation of the use of flexible blades for vertical axis wind turbines. Energy Convers. Manag. 2024, 299, 117867. [Google Scholar] [CrossRef]
- Lam, H.F.; Peng, H.Y. Measurements of the wake characteristics of co-and counter-rotating twin H-rotor vertical axis wind turbines. Energy 2017, 131, 13–26. [Google Scholar] [CrossRef]
- Castelli, M.R.; Englaro, A.; Benini, E. The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 2011, 36, 4919–4934. [Google Scholar] [CrossRef]
- Celik, Y.; Ingham, D.; Ma, L.; Pourkashanian, M. Novel hybrid blade design and its impact on the overall and self-starting performance of a three-dimensional H-type Darrieus wind turbine. J. Fluids Struct. 2023, 119, 103876. [Google Scholar] [CrossRef]
- Sun, X.; Chen, Y.; Cao, Y.; Wu, G.; Zheng, Z.; Huang, D. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine. Adv. Mech. Eng. 2016, 8, 1687814016629349. [Google Scholar] [CrossRef]
Specifications | Darrieus | Savonius | Spoiler |
---|---|---|---|
Profile of the blade | Naca0021 | - | Naca0018 |
Turbine diameter [m] | 1.03 | 0.2 | - |
Chord for a blade [m] | 0.0858 | - | 0.0686 |
Ratio of overlap [m] | - | 0.03 | - |
Number of blades | 3 | 2 | 2 |
Solidity ratio | 0.25 | - | 0.25 |
Grid Features | Grid1 | Grid2 | Grid3 | Grid4 |
---|---|---|---|---|
The initial mesh layer’s height on the blade surface [m] | 3.982 × 10−5 | 3.353 × 10−5 | 1.935 × 10−5 | 1.524 × 10−5 |
Boundary layer growth rate | 1.1 | 1.08 | 1.05 | 1.03 |
Number of boundary layers | 16 | 25 | 30 | 37 |
Overall growth rate | 1.2 | 1.15 | 1.1 | 1.08 |
Minimum orthogonal mass | 0.734 | 0.743 | 0.748 | 0.745 |
Maximum skewness | 0.479 | 0.452 | 0.449 | 0.435 |
Number of grids | 129,751 | 206,676 | 476,259 | 1,153,206 |
Time Step (s) | Angle of Rotation (°) | Number of Time Steps in a Cycle |
---|---|---|
0.000934237 | 0.5 | 720 |
0.001868473 | 1 | 360 |
0.002802710 | 1.5 | 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Song, C.; Qian, Z.; Wu, A.; Zhu, Y.; Xia, J.; Wang, J.; Yang, Y.; Chen, X.; Yuan, Y.; et al. Improvement of Modified Rotor on Aerodynamic Performance of Hybrid Vertical Axis Wind Turbine. Energies 2025, 18, 3357. https://doi.org/10.3390/en18133357
Chen S, Song C, Qian Z, Wu A, Zhu Y, Xia J, Wang J, Yang Y, Chen X, Yuan Y, et al. Improvement of Modified Rotor on Aerodynamic Performance of Hybrid Vertical Axis Wind Turbine. Energies. 2025; 18(13):3357. https://doi.org/10.3390/en18133357
Chicago/Turabian StyleChen, Shaohua, Chenguang Song, Zhong Qian, Aihua Wu, Yixian Zhu, Jianping Xia, Jian Wang, Yuan Yang, Xiang Chen, Yongfei Yuan, and et al. 2025. "Improvement of Modified Rotor on Aerodynamic Performance of Hybrid Vertical Axis Wind Turbine" Energies 18, no. 13: 3357. https://doi.org/10.3390/en18133357
APA StyleChen, S., Song, C., Qian, Z., Wu, A., Zhu, Y., Xia, J., Wang, J., Yang, Y., Chen, X., Yuan, Y., Chen, C., & Cao, Y. (2025). Improvement of Modified Rotor on Aerodynamic Performance of Hybrid Vertical Axis Wind Turbine. Energies, 18(13), 3357. https://doi.org/10.3390/en18133357