Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water
Abstract
:1. Introduction
2. Research Method and Laboratory Studies
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAD% | average absolute deviation percent |
site A of molecule i | |
a | hard-core radius |
site B of molecule j | |
B | volume parameter |
CPA | Cubic Plus Association |
C | Langmuir adsorption constant |
F | fugacity |
g | radial distribution function |
Boltzmann constant | |
binary interaction parameter | |
effective association volume | |
L | liquid water |
mean segment number in the system | |
N | constant (N = 4, 5, 10, 11) |
number of water molecule in a unit cavity | |
OF | objective function |
PC-SAFT | perturbed chain statistical association fluid theory |
p | pressure |
R | universal gas constant |
S | structure |
T | temperature |
critical temperature | |
reduced temperature | |
vdWP | Van der Waals–Platteeuw |
molar volume | |
V | volume |
W | spherical symmetric potential |
X | gas solubility |
mole fraction | |
mole fraction of gases free in the water phase | |
Y | gaseous mole fraction |
Z | compressibility factor |
References
- Shahnazar, S.; Hasan, N. Gas hydrate formation condition: Review on experimental and modeling approaches. Fluid Phase Equilibria 2014, 379, 72–85. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q. Effects of Drilling Mud Properties on Hydrate Dissociation Around Wellbore during Drilling Operation in Hydrate Reservoir. Int. J. Eng. 2021, 35, 142–149. [Google Scholar] [CrossRef]
- Dvoynikov, M.V.; Nutskova, M.V.; Blinov, P.A. Developments Made in the Field of Drilling Fluids by Saint Petersburg Mining University. Int. J. Eng. Trans. A Basics 2020, 33, 702–711. [Google Scholar] [CrossRef]
- Babaee, S.; Hashemi, H.; Mohammadi, A.H.; Naidoo, P.; Ramjugernath, D. Kinetic study of hydrate formation for argon + TBAB + SDS aqueous solution system. J. Chem. Thermodyn. 2017, 116, 121–129. [Google Scholar] [CrossRef]
- Vysniauskas, A.; Bishnoi, P.R. A kinetic study of methane hydrate formation. Chem. Eng. Sci. 1983, 38, 1061–1072. [Google Scholar] [CrossRef]
- Tian, M.; Song, Y.; Zheng, J.-N.; Gong, G.; Yang, M. Effects of Temperature Gradient on Methane Hydrate Formation and Dissociation Processes and Sediment Heat Transfer Characteristics. Energy 2022, 261, 125220. [Google Scholar] [CrossRef]
- Rao, S.; Li, Z.; Deng, Y.; Huang, X.; Lu, H. Effect of material surface on the formation and dissociation of gas hydrate in restricted space between two parallel substrates. Chem. Eng. J. 2022, 450, 138120. [Google Scholar] [CrossRef]
- Song, S.-F.; Fu, S.-K.; Liao, Q.-Y.; Shi, B.-H.; Chen, H.-J.; Gong, J. Investigations on methane hydrate formation, dissociation, and viscosity in gas-water-sand system. Pet. Sci. 2022, 19, 2420–2430. [Google Scholar] [CrossRef]
- Ji, Y.; Hou, J.; Zhao, E.; Liu, C.; Guo, T.; Liu, Y.; Wei, B.; Bai, Y. Pore-scale study on methane hydrate formation and dissociation in a heterogeneous micromodel. J. Nat. Gas Sci. Eng. 2021, 95, 104230. [Google Scholar] [CrossRef]
- Ramamoorthy, R.K.; Teychené, S.; Rodriguez-Ruiz, I.; Torré, J.-P. Insights on the formation and dissociation mechanisms of cyclopentane hydrate obtained by using calorimetry and optical microscopy. Process Saf. Environ. Prot. 2021, 177, 117–122. [Google Scholar] [CrossRef]
- Saw, V.K.; Ahmad, I.; Mandal, A.; Udayabhanu, G.; Laik, S. Methane hydrate formation and dissociation in synthetic seawater. J. Nat. Gas Chem. 2012, 21, 625–632. [Google Scholar] [CrossRef]
- Skovborg, P.; Rasmussen, P. A mass transport limited model for the growth of methane and ethane gas hydrates. Chem. Eng. Sci. 1994, 49, 1131–1143. [Google Scholar] [CrossRef]
- Lekvam, K.; Ruoff, P. A reaction kinetic mechanism for methane hydrate formation in liquid water. J. Am. Chem. Soc. 1993, 115, 8565–8569. [Google Scholar] [CrossRef]
- Jäger, A.; Vinš, V.; Gernert, J.; Span, R.; Hrubý, J. Phase equilibria with hydrate formation in H2O+CO2 mixtures modeled with reference equations of state. Fluid Phase Equilibria 2012, 338, 100–113. [Google Scholar] [CrossRef]
- Meragawi, S.E.; Diamantonis, N.I.; Tsimpanogiannis, I.N.; Economou, I.G. Hydrate—Fluid phase equilibria modeling using PC-SAFT and Peng–Robinson equations of state. Fluid Phase Equilibria 2015, 413, 209–219. [Google Scholar] [CrossRef]
- Amtawong, J.; Sengupta, S.; Nguyen, M.T.; Carrejo, N.C.; Guo, J.; Fleischer, E.B.; Martin, R.W.; Janda, K.C. Kinetics of Trifluoromethane Clathrate Hydrate Formation from CHF3 Gas and Ice Particles. J. Phys. Chem. A 2017, 121, 7089–7098. [Google Scholar] [CrossRef]
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press (Taylor and Francis Group): Boca Raton, FL, USA, 2008. [Google Scholar]
- Pahlavanzadeh, H.; Kamran-Pirzaman, A.; Mohammadi, A.H. Thermodynamic modeling of pressure–temperature phase diagrams of binary clathrate hydrates of methane, carbon dioxide or nitrogen+tetrahydrofuran, 1,4-dioxane or acetone. Fluid Phase Equilibria 2012, 320, 32–37. [Google Scholar] [CrossRef]
- Dharmawardhana, P.B.; Parrish, W.R.; Sloan, E.D. Experimental thermodynamic parameters for the prediction of natural gas hydrate dissociation conditions. Ind. Eng. Chem. Fundam. 1980, 19, 410–414. [Google Scholar] [CrossRef]
- Chapman, W.G.; Gubbins, K.E.; Jackson, G.; Radosz, M. SAFT: Equation-of-state solution model for associating fluids. Fluid Phase Equilibria 1989, 52, 31–38. [Google Scholar] [CrossRef]
- Gross, J.; Sadowski, G. Application of the Perturbed-Chain SAFT equation of state to associating systems. Ind. Eng. Chem. Res. 2002, 41, 5510–5515. [Google Scholar] [CrossRef]
- Ji, X.; Held, C.; Sadowski, G. Modeling imidazolium-based ionic liquids with ePC-SAFT. Part II. Application to H2S and synthesis-gas components. Fluid Phase Equilibria 2013, 363, 59–65. [Google Scholar] [CrossRef]
- Cameretti, L.F.; Sadowski, G.; Mollerup, J.M. Modeling of Aqueous Electrolyte Solutions with Perturbed-Chain Statistical Associated Fluid Theory. Ind. Eng. Chem. Res. 2005, 44, 3355–3362. [Google Scholar] [CrossRef]
- Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 2001, 40, 1244–1260. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Michelsen, M.L.; Folas, G.K.; Derawi, S.; Von Solms, N.; Stenby, E.H. Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure Compounds and Self-Associating Systems. Ind. Eng. Chem. Res. 2006, 45, 4855–4868. [Google Scholar] [CrossRef]
- Kohn, J.P.; Kurata, F. Heterogeneous phase equilibria of the methane—Hydrogen sulfide system. AIChE J. 1958, 4, 211–217. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Kontogeorgis, G.; Michelsen, M.L.; Stenby, E.H. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. I. Mixtures with H2S. AIChE J. 2010, 56, 2965–2982. [Google Scholar] [CrossRef]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. Properties of gases and liquids. In Industrial Combustion Series; McGraw Hill: New York, NY, USA, 2001; pp. 715–724. [Google Scholar] [CrossRef]
- Mahmoudjanloo, H.; Izadpanah, A.A.; Osfouri, S.; Mohammadi, A.H. Modeling liquid–liquid and vapor–liquid equilibria for the hydrocarbon+N-formylmorpholine system using the CPA equation of state. Chem. Eng. Sci. 2013, 98, 152–159. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, R.; Li, J.; Huang, W. Characteristics of Shale Gas Reservoir in Jiyang Depression and its Significance in Drilling and Exploitation. Int. J. Eng. Trans. B Appl. 2020, 33, 1677–1686. [Google Scholar] [CrossRef]
- Poplygin, V.V.; Pavlovskaia, E.E. Investigation of the Influence of Pressures and Proppant Mass on the Well Parameters after Hydraulic Fracturing. Int. J. Eng. Trans. A Basics 2021, 34, 1066–1073. [Google Scholar] [CrossRef]
- Leusheva, E.; Morenov, V.; Tabatabaee Moradi, S. Effect of Carbonate Additives on Dynamic Filtration Index of Drilling Mud. Int. J. Eng. Trans. B Appl. 2020, 33, 934–939. [Google Scholar] [CrossRef]
- Li, D.-L.; Liang, D.-Q.; Fan, S.-S.; Li, X.-S.; Tang, L.-G.; Huang, N.-S. In situ hydrate dissociation using microwave heating: Preliminary study. Energy Convers. Manag. 2008, 49, 2207–2213. [Google Scholar] [CrossRef]
- Wang, F.; Dong, Y.; Li, S.; Zhao, Y.; Liu, S. Dynamic behavior and permeability evolution of CO2 hydrates during dissociation by depressurization: Insights from low-field nuclear magnetic resonance. Gas Sci. Eng. 2025, 135, 205548. [Google Scholar] [CrossRef]
- Shao, Z.; He, G.; Liu, H.; Lin, Q.; Sun, L.; Zhao, Y.; Huang, L. Numerical study on heat and mass transfer characteristics of hot water-induced hydrate dissociation. Int. J. Heat Mass Transf. 2025, 241, 126776. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Li, B.; Wei, W.-N.; Feng, J.-C.; Wan, Q.-C. Kinetic study on the effect of ice nucleation and generation on methane hydrate dissociation below the quadruple point. Gas Sci. Eng. 2024, 131, 205468. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, B.; Luo, X.; Tang, M.; Zhang, X.; Yang, L.; Nie, Y.; Zhou, J.; Zhang, L.; Li, G. Multiphysical evolution and dynamic competition involved in natural gas hydrate dissociation in porous media and its implications for engineering. Energy 2023, 289, 130032. [Google Scholar] [CrossRef]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water; U.S. Geological Survey: Reston, VA, USA, 1959. [CrossRef]
- Nakamura, T.; Makino, T.; Sugahara, T.; Ohgaki, K. Stability boundaries of gas hydrates helped by methane—Structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane. Chem. Eng. Sci. 2002, 58, 269–273. [Google Scholar] [CrossRef]
- Jhaveri, J.; Robinson, D.B. Hydrates in the methane-nitrogen system. Can. J. Chem. Eng. 1965, 43, 75–78. [Google Scholar] [CrossRef]
- De Roo, J.L.; Peters, C.J.; Lichtenthaler, R.N.; Diepen, G.A.M. Occurrence of methane hydrate in saturated and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure. AIChE J. 1983, 29, 651–657. [Google Scholar] [CrossRef]
Component | |||
---|---|---|---|
0.3834 | 3.1439 | 155.593 |
Component | |||||
---|---|---|---|---|---|
2.3203 | 0.0291 | 0.4472 | - | - | |
1.2277 | 0.0145 | 0.6736 | 0.0692 | 166.55 |
Component | |||
---|---|---|---|
4.599 | 190.56 | 0.0115 | |
22.055 | 647.13 | 0.3449 |
T(K) | P (MPa) Experimental | P (MPa) Predicted | AAD |
---|---|---|---|
288.4 | 13.15 | 13.42 | 2.05 |
287.8 | 12.14 | 12.46 | 2.63 |
286.9 | 11.02 | 11.17 | 1.35 |
286.0 | 10.10 | 10.04 | 0.58 |
285.2 | 8.92 | 9.14 | 2.46 |
284.2 | 8.09 | 8.15 | 0.73 |
283.1 | 7.11 | 7.19 | 1.12 |
Deaton and Frost | Nakamura | Jhaveri and Robinson | De Roo | This Study | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T (K) | P (MPa) | T (K) | P (MPa) | T (K) | P (MPa) | T (K) | P (MPa) | T (K) | P (MPa) | |
Exp | 280.4 | 5.35 | 282.7 | 6.88 | 280.4 | 5.58 | 282.8 | 7.04 | 283.1 | 7.13 |
PC-SAFT | 281.05 | 4.96 | 283.3 | 6.42 | 281.4 | 4.96 | 283.5 | 6.49 | 283.6 | 6.72 |
CPA | 279.7 | 5.34 | 282.6 | 6.87 | 280.8 | 5.34 | 282.9 | 6.96 | 283 | 7.19 |
Exp | 280.9 | 5.71 | 283.2 | 7.25 | 284.7 | 8.67 | 284 | 8.05 | 284.2 | 8.09 |
PC-SAFT | 281.65 | 5.24 | 283.7 | 6.8 | 285.2 | 8.1 | 284.6 | 7.46 | 284.7 | 7.64 |
CPA | 281 | 5.64 | 283.1 | 7.27 | 284.6 | 8.63 | 284.1 | 7.96 | 284.1 | 8.15 |
Exp | 281.5 | 6.06 | 283.7 | 7.65 | 287.3 | 11.65 | 285 | 9.04 | 285.2 | 8.91 |
PC-SAFT | 282.2 | 565 | 284.2 | 7.21 | 287.6 | 11.14 | 285.6 | 8.39 | 285.5 | 8.6 |
CPA | 281.6 | 6.02 | 283.6 | 7.69 | 287.2 | 11.73 | 285.1 | 8.93 | 285 | 9.14 |
Exp | 282.6 | 6.77 | 284.3 | 8.1 | 288.9 | 14.05 | 286 | 10.04 | 286 | 10.12 |
PC-SAFT | 283.15 | 6.35 | 284.7 | 7.73 | 289.1 | 13.69 | 286.5 | 9.47 | 286.5 | 9.48 |
CPA | 282.5 | 6.8 | 284 | 8.24 | 288.8 | 14.28 | 285.9 | 10.3 | 286.1 | 10.04 |
Exp | 284.3 | 8.12 | 284.8 | 8.55 | - | - | - | - | 286.9 | 11.03 |
PC-SAFT | 284.7 | 7.73 | 285.1 | 8.2 | - | - | - | - | 287.2 | 10.59 |
CPA | 284.2 | 8.24 | 284.6 | 8.73 | - | - | - | 287.8 | 11.17 | |
Exp | 285.9 | 9.78 | 285.2 | 9.03 | - | - | - | - | 287.8 | 12.14 |
PC-SAFT | 286.2 | 9.36 | 285.6 | 8.6 | - | - | - | - | 288.8 | 11.86 |
CPA | 285.8 | 9.92 | 285.1 | 9.14 | - | - | - | - | 287.6 | 11.46 |
Exp | - | - | 284.8 | 9.54 | - | - | - | - | 288.4 | 13.16 |
PC-SAFT | - | - | 286 | 8.2 | - | - | - | - | 288.6 | 12.82 |
CPA | - | - | 285.6 | 8.73 | - | - | - | - | 288.2 | 12.42 |
PC-SAFT | 0.19 | 6.37 | 0.2 | 6.58 | 0.17 | 6.16 | 0.21 | 7 | 0.12 | 4.28 |
AAD% | ||||||||||
CPA | 0.07 | 0.9 | 0.09 | 2.07 | 0.06 | 1.77 | 0.04 | 0.89 | 0.05 | 1.55 |
AAD% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arfanejad, A.; Poplygin, V.; Shi, X. Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water. Energies 2025, 18, 2849. https://doi.org/10.3390/en18112849
Arfanejad A, Poplygin V, Shi X. Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water. Energies. 2025; 18(11):2849. https://doi.org/10.3390/en18112849
Chicago/Turabian StyleArfanejad, Ashkan, Vladimir Poplygin, and Xian Shi. 2025. "Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water" Energies 18, no. 11: 2849. https://doi.org/10.3390/en18112849
APA StyleArfanejad, A., Poplygin, V., & Shi, X. (2025). Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water. Energies, 18(11), 2849. https://doi.org/10.3390/en18112849