Experimental Investigation of Non-Premixed Combustion Process in a Swirl Burner with LPG and Hydrogen Mixture
Abstract
:1. Introduction
Review and Analysis
2. Materials and Methods
- The compressor speed was set.
- LPG was supplied through the fuel supply pipe.
- After ignition, hydrogen was supplied.
- After achieving a steady state, flue gas measurements were taken.
- The speed was set.
- Fuel was supplied.
- Hydrogen was supplied.
- After achieving a steady state, fuel consumption was gradually reduced in increments of 0.1 kg/hour. Hydrogen consumption decreased proportionally.
3. Results
3.1. NOx and CO Concentrations
3.2. Flame Shape
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, F.; Shafique, M.; Luo, X. Literature review on life cycle assessment of transportation alternative fuels. Environ. Technol. Innov. 2023, 306, 103343. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Q.; Xiong, S.; Yuan, Y. Application of fuel cell and alternative fuel for the decarbonization of China’s road freight sector towards carbon neutral. Int. J. Hydrogen Energy 2023, in press. [Google Scholar] [CrossRef]
- Alabaş, H.A.; Bilge Çeper, A. Effect of oxygen enrichment on the combustion characteristic and pollutant emissions of kerosene-biogas mixtures on a mini jet engine combustion chamber. J. Energy Inst. 2023, 111, 101420. [Google Scholar] [CrossRef]
- Jiao, J.; Yungang, W.; Yufei, L.; Xingbang, Z.; Qinxin, Z. Study on combustion characteristics of fully premixed water-cooled biogas burner. Case Stud. Therm. Eng. 2023, 52, 103669. [Google Scholar] [CrossRef]
- Kuang, Y.; Han, D.; Xu, Z.; Wang, Y.; Wang, C. Numerical study on combustion characteristics of ammonia mixture under different combustion modes. Int. J. Hydrogen Energy 2024, 54, 1403–1409. [Google Scholar] [CrossRef]
- Mofijur, M.; Ahmed, S.F.; Ahmed, B.; Mehnaz, T.; Mehejabin, F.; Shome, S.; Almomani, F.; Chowdhury, A.A.; Kalam, M.A.; Badruddin, I.A.; et al. Impact of nanoparticle-based fuel additives on biodiesel combustion: An analysis of fuel properties, engine performance, emissions, and combustion characteristics. Energy Convers. Manag. 2023, X, 100515. [Google Scholar] [CrossRef]
- Munoz-Herrera, C.; Hernández, C.; Rojas, P.; Bernal, L.; Monzó, C.; Cartagena, R.; Ripoll, N.; Toledo, M. Experimental investigation of the co-combustion of LPG-hydrogen blends on LPG-fueled systems. Energy 2023, 284, 129090. [Google Scholar] [CrossRef]
- Pinto, G.M.; de Souza, T.A.Z.; da Costa, R.B.R.; Roque, L.F.A.; Frez, G.V.; Coronado, C.J.R. Combustion, performance and emission analyses of a CI engine operating with renewable diesel fuels (HVO/FARNESANE) under dual-fuel mode through hydrogen port injection. Int. J. Hydrogen Energy 2023, 48, 19713–19732. [Google Scholar] [CrossRef]
- Kozhukhova, A.E.; du Preez, S.P.; Bessarabov, D.G. Development of Pt–Co/Al2O3 bimetallic catalyst and its evaluation in catalytic hydrogen combustion reaction. Int. J. Hydrogen Energy 2024, 51, 1079–1096. [Google Scholar] [CrossRef]
- Ilbas, M.; Guler, N.U.; Sahin, M. Experimental and numerical investigation of biogas distributed combustion with different oxidizers in a swirl stabilized combustor. Fuel 2021, 304, 121452. [Google Scholar] [CrossRef]
- Jung, C.; Park, J.; Song, S. Performance and NOx emissions of a biogas-fueled turbocharged internal combustion engine. Energy 2015, 86, 186–195. [Google Scholar] [CrossRef]
- Kim, Y.; Kawahara, N.; Tsuboi, K.; Tomita, E. Combustion characteristics and NOX emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine. Appl. Energy 2016, 182, 539–547. [Google Scholar] [CrossRef]
- Okafor, E.C.; Kurata, O.; Yamashita, H.; Inoue, T.; Tsujimura, T.; Iki, N.; Hayakawa, A.; Ito, S.; Uchida, M.; Kobayashi, H. Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control. Appl. Energy Combust. Sci. 2021, 7, 100038. [Google Scholar] [CrossRef]
- Ni, S.; Zhao, D.; You, Y.; Huang, Y.; Wang, B.; Su, Y. NOx emission and energy conversion efficiency studies on ammonia-powered micro-combustor with ring-shaped ribs in fuel-rich combustion. J. Clean. Prod. 2021, 320, 128901. [Google Scholar] [CrossRef]
- Choe, J.; Sun, W.; Ombrello, T.; Carter, C. Plasma assisted ammonia combustion: Simultaneous NOx reduction and flame enhancement. Combust. Flame 2021, 228, 430–432. [Google Scholar] [CrossRef]
- Abdullah, M.; Guiberti, T.F.; Alsulami, R.A. Experimental Assessment on the Coupling Effect of Mixing Length and Methane-Ammonia Blends on Flame Stability and Emissions. Energies 2023, 16, 2955. [Google Scholar] [CrossRef]
- Saluja, R.K.; Kumar, V.; Sham, R. Stability of biodiesel a review. Renew. Sustain. Energy Rev. 2016, 62, 866–881. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ge, J.C.; Choi, N.J. Application of Palm Oil Biodiesel Blends under Idle Operating Conditions in a Common-Rail Direct-Injection Diesel Engine. Appl. Sci. 2018, 8, 2665. [Google Scholar] [CrossRef]
- Mao, G.; Shi, K.; Zhang, C.; Chen, S.; Wang, P. Experimental research on effects of biodiesel fuel combustion flame temperature on NOX formation based on endoscope high-speed photography. J. Energy Inst. 2020, 93, 1399–1410. [Google Scholar] [CrossRef]
- Shen, J.; Li, F.; Li, Z.; Wang, H.; Shen, Y.; Liu, Z. Numerical investigation of air-staged combustion to reduce NOX emissions from biodiesel combustion in industrial furnaces. J. Energy Inst. 2019, 92, 704–716. [Google Scholar] [CrossRef]
- Bao, J.; Qu, P.; Wang, H.; Zhou, C.; Zhang, L.; Shi, C. Implementation of various bowl designs in an HPDI natural gas engine focused on performance and pollutant emissions. Chemosphere 2022, 303, 135275. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Wang, H.; Wang, R.; Wang, Q.; Di, L.; Shi, C. Comparative experimental study on macroscopic spray characteristics of various oxygenated diesel fuels. Energy Sci. Eng. 2023, 11, 1579–1588. [Google Scholar] [CrossRef]
- Elbaz, A.M.; Moneib, H.A.; Shebil, K.M.; Roberts, W.L. Low NOX—LPG staged combustion double swirl flames. Renew. Energy 2019, 138, 303–315. [Google Scholar] [CrossRef]
- Kannan, S.; Mahalingam, S.; Srinath, S.; Sivasankaran, M.; Kannan, S. An experimental study in HCCI combustion of LPG in diesel engine. Mater. Today Proc. 2021, 37, 3625–3629. [Google Scholar] [CrossRef]
- Akal, D.; Öztuna, S.; Büyükakın, M.K. A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect. Int. J. Hydrogen Energy 2020, 45, 35257–35268. [Google Scholar] [CrossRef]
- Jemni, M.A.; Kassem, S.H.; Driss, Z.; Abid, M.S. Effects of hydrogen enrichment and injection location on in-cylinder flow characteristics, performance and emissions of gaseous LPG engine. Energy 2018, 150, 92–108. [Google Scholar] [CrossRef]
- Panigrahy, S.; Mishra, N.K.; Mishra, S.C.; Muthukumar, P. Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner. Energy 2016, 95, 404–414. [Google Scholar] [CrossRef]
- Bohl, T.; Smallbone, A.; Tian, G.; Roskilly, A.P. Particulate number and NOx trade-off comparisons between HVO and mineral diesel in HD applications. Fuel 2018, 215, 90–101. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Kousoulidou, M.; Clairotte, M.; Giechaskiel, B.; Nuottimäki, J.; Sarjovaara, T.; Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel 2019, 235, 1427–1435. [Google Scholar] [CrossRef]
- Ferrarotti, M.; De Paepe, W.; Parente, A. Reactive structures and NOx emissions of methane/hydrogen mixtures in flameless combustion. Int. J. Hydrogen Energy 2021, 46, 34018–34045. [Google Scholar] [CrossRef]
- Chitragar, P.R.; Shivaprasad, K.V.; Nayak, V.; Bedar, P.; Kumar, G.N. An Experimental Study on Combustion and Emission Analysis of Four Cylinder 4-Stroke Gasoline Engine Using Pure Hydrogen and LPG at Idle Condition. Energy Procedia 2016, 90, 525–534. [Google Scholar] [CrossRef]
- Shi, C.; Chai, S.; Wang, H.; Ji, C.; Ge, Y.; Di, L. An insight into direct water injection applied on the hydrogen-enriched rotary engine. Fuel 2023, 339, 127352. [Google Scholar] [CrossRef]
- Xu, Q.; Shen, M.; Shi, K.; Liu, Z.; Feng, J.; Xiong, Y.; Liu, L.; Wang, J.; Han, J.; Tang, Z.; et al. Influence of jet angle on diffusion combustion characteristics and NOx emissions in a self-reflux burner. Case Stud. Therm. Eng. 2021, 25, 100953. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y.; Jin, Q.; Chen, Q.; Zhou, Y. Mechanism analysis on the pulverized coal combustion flame stability and NOx emission in a swirl burner with deep air staging. J. Energy Inst. 2019, 92, 298–310. [Google Scholar] [CrossRef]
- Dostiyarov, A.; Nauryz, B.; Kumargarina, M.; Dostiyarova, A. Experimental study results of the front-end device With two-tier air burner as part of the gas turbine Engine combustion chamber. Therm. Sci. 2023, 27, 3709–3718. [Google Scholar] [CrossRef]
- Zhen, H.S.; Cheung, C.S.; Leung, C.W.; Choy, Y.S. Effects of hydrogen concentration on the emission and heat transfer of a premixed LPG-hydrogen flame. Int. J. Hydrogen Energy 2012, 37, 6097–6105. [Google Scholar] [CrossRef]
- Lefebvre, A. Gas Turbine Combustion; Hemisphere Publishing: London, UK, 1983; 550p. [Google Scholar]
- Sungwoo, P. Hydrogen addition effect on NO formation in methane/air lean-premixed flames at elevated pressure. Int. J. Hydrogen Energy 2021, 46, 25712–25725. [Google Scholar]
Parameter | Units | Value |
---|---|---|
Length | mm | 350 |
Inlet diameter | mm | 50 |
Inner diameter of outlet | Mm | 100 |
Outlet diameter | mm | 200 |
Parameter | Units | Value |
---|---|---|
Ambient temperature | °C | 20 |
Air humidity | % | 40 |
Equivalence ratio | - | 0.3–1.00 |
Reynolds number | - | 50,000–350,000 |
XH2 (volume%) | γ, % | 0–40 |
Air flow | m3/s | 0.19–1.19 |
LPG flow | m3/s | 0.0105 |
Hydrogen flow | m3/s | 0–0.0036 |
LPG | - | C3H8-50%, C4H10-50% |
Hydrogen | - | H2; 99.96% purity |
Air viscosity | m2/s | 15.06 |
Swirl number | - | 30°-0.4; 45°-0.8; 60°-1.3 |
Equipment | Purpose | Type | Description | Error |
---|---|---|---|---|
Compressor | To pressurize air | BK-160-E/4 | Productivity, L/min: 26,500 max Pressure, bar: up to 4 Power, kW: 160 | |
Transformer | To control the current and compressor power | LATR 2000VA | ||
Laboratory thermometers | To measure temperature | Laboratory thermometer TLS 2 | ±1.0 °C | |
Chromel-copel thermocouples | To measure air temperature | in the range from minus 40 to plus 375 °C: ±1.5 | ||
Multimeter | To display temperatures from thermocouples | Multimeter UNI-T UT139C | - | |
Gas analyzer | To measure exhaust gas composition | Testo-350 | NOx: abs. ±2 ppm with measured values from 0 to 39.9 ppm | |
CO: ±10 ppm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dostiyarov, A.M.; Umyshev, D.R.; Kibarin, A.A.; Yamanbekova, A.K.; Tumanov, M.E.; Koldassova, G.A.; Anuarbekov, M.A. Experimental Investigation of Non-Premixed Combustion Process in a Swirl Burner with LPG and Hydrogen Mixture. Energies 2024, 17, 1012. https://doi.org/10.3390/en17051012
Dostiyarov AM, Umyshev DR, Kibarin AA, Yamanbekova AK, Tumanov ME, Koldassova GA, Anuarbekov MA. Experimental Investigation of Non-Premixed Combustion Process in a Swirl Burner with LPG and Hydrogen Mixture. Energies. 2024; 17(5):1012. https://doi.org/10.3390/en17051012
Chicago/Turabian StyleDostiyarov, Abay Mukhamediyarovich, Dias Raybekovich Umyshev, Andrey Anatolievich Kibarin, Ayaulym Konusbekovna Yamanbekova, Musagul Elekenovich Tumanov, Gulzira Ainadinovna Koldassova, and Maxat Arganatovich Anuarbekov. 2024. "Experimental Investigation of Non-Premixed Combustion Process in a Swirl Burner with LPG and Hydrogen Mixture" Energies 17, no. 5: 1012. https://doi.org/10.3390/en17051012
APA StyleDostiyarov, A. M., Umyshev, D. R., Kibarin, A. A., Yamanbekova, A. K., Tumanov, M. E., Koldassova, G. A., & Anuarbekov, M. A. (2024). Experimental Investigation of Non-Premixed Combustion Process in a Swirl Burner with LPG and Hydrogen Mixture. Energies, 17(5), 1012. https://doi.org/10.3390/en17051012