Mechanisms by Which an Evaporated Lagoon Sedimentation System Controls Source–Reservoir Preservation in Lei32 Sub-Member Unconventional Oil and Gas
Abstract
:1. Introduction
2. Geologic Settings
3. Materials and Methods
3.1. TOC and XRD Analysis
3.2. Porosity and Permeability Tests and Electron Microscopy Observation
3.3. C-O Isotopic Compositions and Major–Trace Elements
4. Results
4.1. Lithological Characteristics
4.2. Source Rock Characteristics
4.3. Reservoir Characteristics
4.4. Oil and Gas Characteristics
5. Discussion
5.1. Effect of Evaporated Lagoon Sedimentation on Source Rocks
5.1.1. Paleo-Salinity and Closure
5.1.2. Paleo-Sedimentary Environment
5.1.3. Clay Mineral for Carbonate Source Rock
5.2. Effect of Evaporated Lagoon Sedimentation on Reservoirs
Controlling Factors for Reservoir Development
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.G.; Xin, Y.G.; Gu, M.F.; Zhang, J.Y.; Hao, Y.; Li, G.J.; Lü, Y.Z. Direction of gas exploration in the Middle Triassic Leikoupo Formation of the Sichuan Basin. Nat. Gas Ind. 2010, 30, 16–19. [Google Scholar]
- Liu, S.; Sun, W.; Song, J.M.; Yong, Z.; Wang, H.; Zhao, C. The key geological problems of natural gas exploration in the Middle Triassic Leikoupo Formation in Sichuan Basin. Nat. Gas Geosci. 2019, 30, 151–167. [Google Scholar]
- Yang, Y.; Xie, J.R.; Zhang, J.Y.; Wen, L.; Zhao, L.; Zhang, H. Characteristics and exploration potential of unconventional Middle Triassic Lei32 reservoirs in the central Sichuan Basin. Nat. Gas Ind. 2022, 42, 12–22. [Google Scholar]
- Li, R.; Su, C.P.; Shi, G.S.; Jia, H.F.; Li, S.H.; Yu, Y. The genesis of nodular limestone reservoirs of the first period of Maokou Formation of Permian in southern Sichuan Basin. Nat. Gas Geosci. 2021, 32, 806–815. [Google Scholar]
- Tian, H.; Wang, G.W.; Duan, S.F.; Xin, Y.G.; Zhang, H. Reservoir characteristics and exploration target of the Middle Triassic Leikoupo Formation in Sichuan Basin. China Pet. Explor. 2021, 26, 60–73. [Google Scholar]
- Zhang, J.Y.; Xin, Y.G.; Zhang, H.; Tian, H.; Zhu, X.J.; Chen, W. A new unconventional gas reservoir type Source-reservoir integrated carbonate gas reservoir from evaporated lagoon facies in Lei32 sub-member in Central Sichuan Basin. Nat. Gas Geosci. 2023, 34, 23–34. [Google Scholar]
- Tang, L.; Song, Y.; Jiang, S.; Li, L.; Li, Z.; Li, Q.; Yang, Y. Sealing Mechanism of the Roof and Floor for the Wufeng-Longmaxi Shale Gas in the Southern Sichuan Basin. Energy Fuels 2020, 34, 6999–7018. [Google Scholar] [CrossRef]
- Xin, Y.G.; Zhou, J.G.; Ni, C.; Gu, M.F.; Gong, Q.S.; Dong, Y.; Zhang, Y.J. Sedimentary facies features and favorable lithofacies distribution of Middle Triassic Leikoupo barriered carbonate platform in Sichuan Basin. Mar. Orig. Pet. Geol. 2013, 18, 1–7. [Google Scholar]
- Tissot, B.P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration. AAPG Bull. 1984, 68, 545–563. [Google Scholar]
- Palacas, J.G.; Anders, D.E.; King, J.D. South Florida basin—A prime example of carbonate source rocks of petroleum. In Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks; American Association of Petroleum Geologists: Tulsa, OK, USA, 1984. [Google Scholar]
- Yang, K.M. Hydrocarbon potential of source rocks in the Middle Triassic Leikoupo Formation in the Western Sichuan Depression. Pet. Geol. Exp. 2016, 38, 366–374. [Google Scholar]
- Moldovanyi, E.P.; Lohmann, K.C. Isotopic and petrographic record of phreatic diagenesis; Lower Cretaceous Sligo and Cupido formations. J. Sediment. Res. 1984, 54, 972–985. [Google Scholar]
- Rahimpour-Bonab, H.; Esrafili-Dizaji, B.; Tavakoli, V. Dolomitization and anhydrite precipitation in permo-triassic carbonates at the South Pars gasfield, offshore Iran: Controls on reservoir quality. J. Pet. Geol. 2010, 33, 43–66. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Zuo, Y.H.; Wen, H.G.; Li, D.M.; Luo, Y.; Zhang, J.Z.; Yang, M.H.; Zeng, J.C. Natural gas characteristics and gas-source comparisons of the lower Triassic Feixianguan Formation, Eastern Sichuan Basin. Pet. Sci. 2023, 20, 1458–1470. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Zuo, Y.H.; Yang, M.H.; Huang, W.M.; Xu, L.; Zheng, Z.Y.; Zeng, J.C. Hydrocarbon generation and expulsion histories of the Upper Permian Longtan Formation in the Eastern Sichuan Basin, Southwest China. ACS Omega 2023, 8, 19329–19340. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Zuo, Y.H.; Wen, H.G.; Zhang, J.Z.; Zhou, G.; Xu, L.; Sun, H.F.; Yang, M.H.; Yan, K.N.; Zeng, J.C. Natural gas characteristics and gas-source comparisons of the lower Triassic Jialingjiang formation, Eastern Sichuan basin. J. Pet. Sci. Eng. 2023, 221, 111165. [Google Scholar] [CrossRef]
- Leng, M.J.; Marshall, J.D. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat. Sci. Rev. 2004, 23, 811–831. [Google Scholar] [CrossRef]
- Tang, L.; Song, Y.; Pang, X.; Jiang, Z.; Guo, Y.; Zhang, H.; Jiang, H. Effects of paleo sedimentary environment in saline lacustrine basin on organic matter accumulation and preservation: A case study from the Dongpu Depression, Bohai Bay Basin, China. J. Pet. Sci. Eng. 2019, 185, 106669. [Google Scholar] [CrossRef]
- Talbot, M.R.; Kelts, K. Paleolimnological Signatures from Carbon and Oxygen Isotopic Ratios in Carbonates, from Organic Carbon-Rich Lacustrine Sediments: Chapter 6. In Lacustrine Basin Exploration: Case Studies and Modern Analogs; AAPG MEMOIR; American Association of Petroleum Geologists: Tulsa, OK, USA, 1990; pp. 99–112. [Google Scholar]
- Li, H.C.; Ku, T.L. δ13C-δ18C covariance as a paleo hydrological indicator for closed-basin lakes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 133, 69–80. [Google Scholar] [CrossRef]
- Epstein, S.; Mayeda, T. Variation of 18O content of waters from natural sources. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- You, H.T.; Cheng, R.H.; Liu, C.L. Review of paleo salinity recovering methods. Glob. Geol. 2002, 21, 111–117. [Google Scholar]
- Keith, M.L.; Weber, J.D. Isotopic composition and environment classification of selected limestones and fossils. Geochim Cosmochim Acta 1964, 23, 1796–1816. [Google Scholar]
- Leila, M.; Moscariello, A.; Šegvić, B. Geochemical constraints on the provenance and depositional environment of the Messinian sediments, onshore Nile Delta, Egypt: Implications for the late Miocene paleogeography of the Mediterranean. J. Afr. Earth Sci. 2018, 143, 215–241. [Google Scholar] [CrossRef]
- Meng, Q.T.; Liu, Z.J.; Bruch, A.A.; Liu, R.; Hu, F. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. J. Asian Earth Sci. 2012, 45, 95–105. [Google Scholar] [CrossRef]
- Fathy, D.; Wagreich, M.; Fathi, E.; Ahmed, M.S.; Leila, M.; Sami, M. Maastrichtian Anoxia and Its Influence on Organic Matter and Trace Metal Patterns in the Southern Tethys Realm of Egypt during Greenhouse Variability. ACS Omega 2023, 8, 19603–19612. [Google Scholar] [CrossRef]
- Sun, H.F.; Luo, B.; Wen, L.; Wang, J.X.; Zhou, G.; Wen, H.G.; Huo, F.; Dai, X.; He, C.L. The first discovery of organic-rich shale in Leikoupo Formation and new areas of subsalt exploration, Sichuan Basin. Nat. Gas Geosci. 2021, 32, 233–247. [Google Scholar]
- Jones, R.W. Comparison of carbonate and shale source rocks. AAPG Bull. 2019, 68, 494. [Google Scholar]
- Li, C.; Tan, M.; Wang, Z.; Li, Y.; Xiao, L. Nuclear magnetic resonance pore radius transformation method and fluid mobility characterization of shale oil reservoirs. Geoenergy Sci. Eng. 2023, 221, 211403. [Google Scholar] [CrossRef]
- Zhou, X.; Lü, X.; Quan, H.; Qian, W.; Mu, X.; Chen, K.; Bai, Z. Influence factors and an evaluation method about breakthrough pressure of carbonate rocks: An experimental study on the Ordovician of carbonate rock from the Kalpin area, Tarim Basin, China. Mar. Pet. Geol. 2019, 104, 313–330. [Google Scholar] [CrossRef]
- Wang, G.; Shen, J.; Liu, S.; Jiang, C.; Qin, X. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. Int. J. Rock Mech. Min. Sci. 2019, 123, 104082. [Google Scholar] [CrossRef]
Well Name | Formation | Depth/m | Lithology | TOC/% | Mineral Composition/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Calcite | Dolomite | Pyrite | Anhydrite | Clay | |||||
JY1 | Lei32 | 2639.51 | limestone | 0.07 | 4.0 | 2.0 | 94.0 | 0.0 | 0.0 | 0.0 | 0.0 |
JY1 | Lei32 | 2643.39 | limestone | 0.07 | 4.0 | 3.0 | 93.0 | 0.0 | 0.0 | 0.0 | 0.0 |
JY1 | Lei32 | 2643.63 | argillaceous limestone | 0.08 | 4.0 | 2.0 | 92.0 | 0.0 | 0.0 | 0.0 | 2.0 |
JY1 | Lei32 | 2643.47 | argillaceous limestone | 0.23 | 17.0 | 4.0 | 61.0 | 0.0 | 0.0 | 0.0 | 18.0 |
JY1 | Lei32 | 2642.97 | argillaceous limestone | 0.22 | 6.0 | 3.0 | 80.0 | 0.0 | 0.0 | 0.0 | 11.0 |
JY1 | Lei32 | 2642.40 | argillaceous limestone | 0.07 | 4.0 | 2.0 | 92.0 | 0.0 | 0.0 | 0.0 | 2.0 |
JY1 | Lei32 | 2641.16 | argillaceous limestone | 0.12 | 11.0 | 8.0 | 79.0 | 0.0 | 0.0 | 0.0 | 2.0 |
JY1 | Lei32 | 2640.18 | argillaceous limestone | 0.96 | 9.0 | 1.0 | 50.0 | 6.0 | 3.0 | 0.0 | 31.0 |
JY1 | Lei32 | 2642.30 | argillaceous limestone | 0.34 | 12.0 | 5.0 | 54.0 | 3.0 | 0.0 | 0.0 | 26.0 |
JY1 | Lei32 | 2637.13 | gypsiferous argillaceous limestone | 0.81 | 10.0 | 4.0 | 30.0 | 14.0 | 0.0 | 10.0 | 32.0 |
JY1 | Lei32 | 2637.27 | gypsiferous argillaceous limestone | 0.91 | 8.0 | 1.0 | 33.0 | 15.0 | 3.0 | 10.0 | 30.0 |
JY1 | Lei32 | 2638.75 | gypsiferous argillaceous limestone | 0.85 | 7.0 | 5.0 | 29.0 | 21.0 | 0.0 | 10.0 | 28.0 |
CT1 | Lei32 | 3560.30 | argillaceous limestone | 0.60 | 10.3 | 2.5 | 50.2 | 2.6 | 0.0 | 0.0 | 34.4 |
CT1 | Lei32 | 3560.84 | argillaceous limestone | 0.80 | 9.6 | 2.7 | 54.7 | 1.7 | 1.0 | 0.0 | 30.3 |
CT1 | Lei32 | 3561.83 | argillaceous limestone | 0.57 | 3.6 | 4.1 | 59.3 | 0.0 | 0.0 | 0.0 | 30.0 |
CT1 | Lei32 | 3568.20 | argillaceous limestone | 0.86 | 14.9 | 3.1 | 50.5 | 5.7 | 0.0 | 0.0 | 25.8 |
CT1 | Lei32 | 3566.20 | calcareous mudstone | 1.15 | 19.0 | 4.1 | 13.2 | 6.3 | 1.0 | 0.0 | 56.4 |
CT1 | Lei32 | 3567.10 | calcareous mudstone | 0.86 | 19.7 | 3.3 | 13.2 | 7.6 | 0.0 | 0.0 | 56.2 |
CT1 | Lei32 | 3567.40 | calcareous mudstone | 0.86 | 18.0 | 3.0 | 13.0 | 7.8 | 1.0 | 0.0 | 53.2 |
HP1 | Lei32 | 2346.00 | calcareous mudstone | 1.98 | 29.9 | 1.7 | 2.7 | 1.5 | 1.5 | 0.0 | 62.6 |
Well Name | Depth/m | Formation | Lithology | δ13C‰ (VPDB) | δ18O‰ (VPDB) | Z Value |
---|---|---|---|---|---|---|
CT1 | 3568.2 | Lei32 | argillaceous limestone | 2.02 | −4.46 | 129.2 |
CT1 | 3565.8 | Lei32 | argillaceous limestone | 2.12 | −4.18 | 129.6 |
CT1 | 3560.3 | Lei32 | argillaceous limestone | 2.05 | −4.23 | 129.4 |
CT1 | 3567.1 | Lei32 | calcareous mudstone | 1.63 | −3.55 | 128.9 |
CT1 | 3566.2 | Lei32 | calcareous mudstone | 1.42 | −3.61 | 128.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Y.; Li, W.; Zhang, H.; Tian, H.; Fu, X.; Xie, Z. Mechanisms by Which an Evaporated Lagoon Sedimentation System Controls Source–Reservoir Preservation in Lei32 Sub-Member Unconventional Oil and Gas. Energies 2024, 17, 964. https://doi.org/10.3390/en17040964
Xin Y, Li W, Zhang H, Tian H, Fu X, Xie Z. Mechanisms by Which an Evaporated Lagoon Sedimentation System Controls Source–Reservoir Preservation in Lei32 Sub-Member Unconventional Oil and Gas. Energies. 2024; 17(4):964. https://doi.org/10.3390/en17040964
Chicago/Turabian StyleXin, Yongguang, Wenzheng Li, Hao Zhang, Han Tian, Xiaodong Fu, and Zengye Xie. 2024. "Mechanisms by Which an Evaporated Lagoon Sedimentation System Controls Source–Reservoir Preservation in Lei32 Sub-Member Unconventional Oil and Gas" Energies 17, no. 4: 964. https://doi.org/10.3390/en17040964
APA StyleXin, Y., Li, W., Zhang, H., Tian, H., Fu, X., & Xie, Z. (2024). Mechanisms by Which an Evaporated Lagoon Sedimentation System Controls Source–Reservoir Preservation in Lei32 Sub-Member Unconventional Oil and Gas. Energies, 17(4), 964. https://doi.org/10.3390/en17040964