Fast Design and Numerical Simulation of a Metal Hydride Reactor Embedded in a Conventional Shell-and-Tube Heat Exchanger
Abstract
:1. Introduction
2. Metal Hydride Reactor Design Method
2.1. Reaction Heat Flow during Hydrogen Storage
2.2. Bed Thickness Calculation
2.3. Determining Heat Transfer Parameters
3. Results and Discussion
3.1. Calculation of Shell Parameters
3.2. Reactor Weight
3.3. Simulation Verification
3.3.1. Physical Modeling
- The alloy material is the same;
- Radiative heat transfer is ignored throughout;
- The heat loss in the heat transfer process is ignored;
- The ambient temperature is 290 K and the ambient pressure is 1 standard atmospheric pressure;
- The change in alloy volume during the reaction process is ignored;
- At each location, there is a local thermal balance between the bed and the gas.
3.3.2. Mathematical Model and Numerical Procedure
3.3.3. Simulation Methodology and Model Validation
3.3.4. Simulation of Hydrogen Storage Process
4. Conclusions
- (1)
- The calculated bed thicknesses using TS, RF, and AE are comparable, and RF is chosen for use because of the higher number of physical factors considered. According to the results of the RF calculation, the bed thickness will increase as pressure and porosity increase, while it will reduce as the temperature of the heat transfer fluid rises.
- (2)
- The diameter of the hydrogen storage tubes grows and the number of tubes reduces with increasing bed thickness. Therefore, a large number of tubes contribute to a large reactor weight for a relatively short charging time of 500 s. The alloy weight ratios determined in this study are found to be close to the results reported in the literature.
- (3)
- From the simulation results, the reaction fraction of the reactor designed for a charging time of 1500 s reaches its maximum at 500 s. Since the reactor model is the outcome of the heat exchange calculation, where complete heat dissipation back to the initial temperature is assumed in the theoretical tool, such contradiction suggests that a more accurate tool for estimating bed thickness needs to be developed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Area, m2 |
AE | Acceptability Envelope |
cp | Specific heat, J/(kg·K) |
d | Tube diameter, mm |
D | Shell diameter, mm |
DHF | Design heat flow |
H | Enthalpy |
K | Permeability, m2 |
L | Thicknesses |
M | Molecular weight, kg/mol |
Normal vector | |
Np | Baffle plates number |
Nu | Nussel number |
Pt | Pitch of the tubes, mm |
q | Reaction heat flow, W |
Q | Design heat flow, W |
Re | Reynolds number |
RF | Reaction front |
RHF | Reaction heat flow |
S | Entropy |
t | Time, s |
T | Temperature |
TS | Time scale |
U | Heat transfer coefficient |
w | Weight ratio |
Greek Symbols | |
ε | Porosity |
ρ | Density, kg/m3 |
λ | Thermal conductivity, W/(m·K) |
μ | Dynamic viscosity, kg/(m·s) |
Subscripts | |
0 | Initial value |
d | Tube |
D | Shell |
es | Equivalent diameter |
eq | Equilibrium |
eff | Effective value |
f | Cooling water |
in | Inner |
g | Hydrogen |
o | Out |
ref | Reference |
s | Metal hydride |
sat | Saturation value |
v | Vessel |
w | Tube |
References
- Xu, G.; Chen, W.; Fang, Z. Research progress of supercritical water hydrogen production from biomass. Trans. Chin. Soc. Agric. Eng. 2023, 39, 24–35. [Google Scholar] [CrossRef]
- Sazali, N. Emerging technologies by hydrogen: A review. Int. J. Hydrogen Energy 2020, 45, 18753–18771. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissrl, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Thomas, J.M.; Edwards, P.P.; Dobson, P.J.; Owen, G.P. Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells. J. Energy Chem. 2020, 51, 405–415. [Google Scholar] [CrossRef]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in energy transition: A review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Lebrouhi, B.E.; Djoupo, J.J.; Lamrani, B.; Benabdelaziz, K.; Kousksou, T. Global hydrogen development-A technological and geopolitical overview. Int. J. Hydrogen Energy 2022, 47, 7016–7048. [Google Scholar] [CrossRef]
- Cevahir, T.; Ali, M.Ç. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Singh, G.; Ramadass, K.; DasiReddy, V.D.; Yuan, X.; Ok, Y.S.; Bolan, N.; Xue, X.; Tianyi, M.; Ajay, K.; Yi, J.; et al. Material-based generation, storage, and utilisation of hydrogen. Prog. Mater. Sci. 2023, 135, 101104. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, W.; Kang, J.; Yuan, T. The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China. Energies 2023, 16, 4837. [Google Scholar] [CrossRef]
- Liu, C.; Pei, Y.; Han, H.; Zhou, H.; Zhang, R.; Li, Y.; Zhu, J.; Wang, C.; Kong, Y. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies. Oil Gas Storage Transp. 2022, 41, 498–514. [Google Scholar] [CrossRef]
- Huang, J.; Tian, Z.; Lei, L.; Wang, C.; Shu, R.; Luo, X.; Liu, J. Advances and Development Trends of Hydrogen Storage and Refueling Industry. Adv. New Renew. Energy 2023, 11, 162–173. [Google Scholar] [CrossRef]
- Yao, J.; Zhu, P.; Ren, J.; Wu, Z. Simulation on hydrogen absorption process of metal hydride-based hydrogen storage reactor coupled with phase change thermal storage. Chin. J. Process Eng. 2018, 18, 1093–1101. [Google Scholar] [CrossRef]
- Afzal, M.; Mane, R.; Sharma, P. Heat transfer techniques in metal hydride hydrogen storage: A review. Int. J. Hydrogen Energy 2017, 42, 30661–30682. [Google Scholar] [CrossRef]
- Yang, F.S.; Wang, G.X.; Zhang, Z.X.; Meng, X.Y.; Rudolph, V. Design of the metal hydride reactors—A review on the key technical issues. Int. J. Hydrogen Energy 2010, 35, 3832–3840. [Google Scholar] [CrossRef]
- Krane, P.; Nash, A.L.; Ziviani, D.; Braun, J.E.; Marconnet, A.M.; Jain, N. Dynamic modeling and control of a two-reactor metal hydride energy storage system. Appl. Energy 2022, 325, 119836. [Google Scholar] [CrossRef]
- Liu, Y.; Ayub, I.; Khan, M.; Yang, F.; Wu, Z.; Zhang, Z. Numerical investigation of metal hydride heat storage reactor with two types multiple heat transfer tubes structures. Energy 2022, 253, 124142. [Google Scholar] [CrossRef]
- Kudiiarov, V.; Elman, R.; Pushilina, N.; Kurdyumov, N. State of the Art in Development of Heat Exchanger Geometry Optimization and Different Storage Bed Designs of a Metal Hydride Reactor. Materials 2023, 16, 4891. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Xiao, J.; Bénard, P.; Chahine, R. Thermal management of metal hydride hydrogen storage reservoir using phase change materials. Int. J. Hydrogen Energy 2019, 44, 21055–21066. [Google Scholar] [CrossRef]
- Kumar, A.; Raju, N.N.; Muthukumar, P.; Selvan, P.V. Experimental studies on industrial scale metal hydride based hydrogen storage system with embedded cooling tubes. Int. J. Hydrogen Energy 2019, 44, 13549–13560. [Google Scholar] [CrossRef]
- Bai, X.S.; Yang, W.W.; Tang, X.Y.; Yang, F.S.; Jiao, Y.H.; Yang, Y. Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study. Energy 2021, 220, 119738. [Google Scholar] [CrossRef]
- Sreeraj, R.; Aadhithiyan, A.K.; Anbarasu, S. Integration of thermal augmentation methods in hydride beds for metal hydride based hydrogen storage systems: Review and recommendation. J. Energy Storage 2022, 52, 105039. [Google Scholar] [CrossRef]
- El Mghari, H.; Huot, J.; Xiao, J. Analysis of hydrogen storage performance of metal hydride reactor with phase change materials. Int. J. Hydrogen Energy 2019, 44, 28893–28908. [Google Scholar] [CrossRef]
- Shafiee, S.; McCay, M.H. Different reactor and heat exchanger configurations for metal hydride hydrogen storage systems–A review. Int. J. Hydrogen Energy 2016, 41, 9462–9470. [Google Scholar] [CrossRef]
- Raju, N.N.; Muthukumar, P.; Selvan, V.P.; Malleswararao, K. Design methodology and thermal modelling of industrial scale reactor for solid state hydrogen storage. Int. J. Hydrogen Energy 2019, 44, 20278–20292. [Google Scholar] [CrossRef]
- Mazzucco, A.; Voskuilen, G.T.; Waters, L.E.; Pourpoint, L.T.; Rokni, M. Heat exchanger selection and design analyses for metal hydride heat pump systems. Int. J. Hydrogen Energy 2016, 41, 4198–4213. [Google Scholar] [CrossRef]
- Wang, H.; Du, M.; Wang, Q.; Li, Z.; Wang, S.; Gao, Z.; Derksen, J.J. Enhancement of hydrogen storage performance in shell and tube metal hydride tank for fuel cell electric forklift. Int. J. Hydrogen Energy 2023, 48, 23568–23580. [Google Scholar] [CrossRef]
- Prasad, J.S.; Muthukumar, P. Design and performance analysis of an annular metal hydride reactor for large-scale hydrogen storage applications. Renew. Energy 2022, 181, 1155–1166. [Google Scholar] [CrossRef]
- Purdue Metal Hydride Toolbox. Available online: https://github.com/PurdueH2Lab/MetalHydrideToolbox (accessed on 13 January 2022).
- GB/T 177395-2008; Dimensions, Shapes, Masses and Tolerances of Seamless Steel Tubes. China Standard Press: Beijing, China, 2008.
- Wang, C.S.; Brinkerhoff, J. Is there a general time scale for hydrogen storage with metal hydrides or activated carbon? Int. J. Hydrogen Energy 2021, 46, 12031–12034. [Google Scholar] [CrossRef]
- Marty, P.; de Rango, P.; Delhomme, B.; Garrier, S. Various tools for optimizing large scale magnesium hydride storage. J. Alloys Compd. 2013, 580, S324–S328. [Google Scholar] [CrossRef]
- Claudio, C.; Bruce, J.H.; David, A.T.; Stephen, L.G.; Donald, L.A. Acceptability envelope for metal hydride-based hydrogen storage systems. Int. J. Hydrogen Energy 2011, 37, 2812–2824. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, H.; Liu, Y.; Shi, Q. Metal hydride thermal energy storage and its research progress. Mater. Sci. Eng. Powder Metall. 2019, 24, 391–399. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, F.; Zhang, Z.; Bao, Z. Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design. Appl. Energy 2014, 130, 712–722. [Google Scholar] [CrossRef]
- Qiu, S.; Qian, B. Principle, Structure and Design of Heat Exchanger; Shanghai Jiao Tong University Press: Shanghai, China, 1990; pp. 43–146. [Google Scholar]
- Sun, C.; Ai, S.; Liu, Y. Numerical simulation plate side flow heat transfer new plate-shell heat exchanger with considering physical property changes and shell heat transfer. Chem. Ind. Eng. Prog. 2024, 1–18. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, Y.; Wu, H.; Zhang, X.; Sun, Y.; Li, Y.; Chang, J.; He, Z.; Hong, J. A design methodology of large-scale metal hydride reactor based on schematization for hydrogen storage. J. Energy Storage 2022, 49, 104047. [Google Scholar] [CrossRef]
- Sreeraj, R.; Aadhithiyan, A.K.; Anbarasu, S. Comparison, advancement, and performance evaluation of heat exchanger assembly in solid-state hydrogen storage device. Renew. Energy 2022, 198, 667–678. [Google Scholar] [CrossRef]
- Bao, Z.; Wu, Z.; Nyamsi, S.N.; Yang, F.; Zhang, Z. Three-dimensional modeling and sensitivity analysis of multi-tubular metal hydride reactors. Appl. Therm. Eng. 2013, 52, 97–108. [Google Scholar] [CrossRef]
- Pandey, V.; Krishna, K.V.; Maiya, M.P. Numerical modelling and heat transfer optimization of large-scale multi-tubular metal hydride reactors. Int. J. Hydrogen Energy 2023, 48, 16020–16036. [Google Scholar] [CrossRef]
- Bai, X.S.; Yang, W.W.; Tang, X.Y.; Dai, Z.Q.; Yang, F.S. Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device. Energy 2022, 243, 123044. [Google Scholar] [CrossRef]
- Li, K.; Wang, Z.; Zhan, J.; He, Q.; Li, Y. Parameter optimization of J -type heat exchanger baffles based on numerical simulation. Cryog. Supercond. 2023, 51, 43–48. [Google Scholar] [CrossRef]
- Jemni, A.; Nasrallah, S.B.; Lamloumi, J. Experimental and theoretical study of ametal–hydrogen reactor. Int. J. Hydrogen Energy 1999, 24, 631–644. [Google Scholar] [CrossRef]
t/s | din/mm | Ld/mm | L/mm | Nt | Pt/mm | Np | Din/mm | LD/mm | q/W | Q/W |
---|---|---|---|---|---|---|---|---|---|---|
500 | 32 | 1.5 | 11 | 40 | 43.8 | 2 | 400 | 8 | 4170 | 5303 |
1000 | 40 | 1.5 | 15 | 25 | 52.5 | 2 | 400 | 8 | 2085 | 2905 |
1500 | 50 | 2 | 20 | 16 | 67.5 | 2 | 400 | 8 | 1390 | 1753 |
Parameters | Value | Units |
---|---|---|
Filter diameter | 10 | mm |
Tube length | 300 | mm |
Thermal conductivity | 15 | mm |
Density | 7980 | kg/m3 |
Parameters | Symbols | Value | Unit |
---|---|---|---|
Absorption rate constant | 59.187 | 1/s | |
Activation energy (absorption) | 21,170 | J/mol | |
Reaction heat of formation | −30 | kJ/mol | |
Density of LaNi5 | 8400 | kg/m3 | |
Density of hydrogen gas | 0.0838 | kg/m3 | |
Specific heat of LaNi5 | 419 | J/(kg·K) | |
Specific heat of hydrogen gas | 14,283 | J/(kg·K) | |
Thermal conductivity of LaNi5 | 2 | W/(m·K) | |
Thermal conductivity of hydrogen gas | 0.18 | W/(m·K) | |
Van’t Hoff constant | A | 12.99 | |
Van’t Hoff constant | B | 3704.59 | |
Porosity of metal hydride | 0.5 | ||
Permeability of metal hydride | K | 10−8 | m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, R.; Wang, J.; Yang, F.; Imin, R. Fast Design and Numerical Simulation of a Metal Hydride Reactor Embedded in a Conventional Shell-and-Tube Heat Exchanger. Energies 2024, 17, 712. https://doi.org/10.3390/en17030712
Ran R, Wang J, Yang F, Imin R. Fast Design and Numerical Simulation of a Metal Hydride Reactor Embedded in a Conventional Shell-and-Tube Heat Exchanger. Energies. 2024; 17(3):712. https://doi.org/10.3390/en17030712
Chicago/Turabian StyleRan, Ruizhe, Jing Wang, Fusheng Yang, and Rahmatjan Imin. 2024. "Fast Design and Numerical Simulation of a Metal Hydride Reactor Embedded in a Conventional Shell-and-Tube Heat Exchanger" Energies 17, no. 3: 712. https://doi.org/10.3390/en17030712
APA StyleRan, R., Wang, J., Yang, F., & Imin, R. (2024). Fast Design and Numerical Simulation of a Metal Hydride Reactor Embedded in a Conventional Shell-and-Tube Heat Exchanger. Energies, 17(3), 712. https://doi.org/10.3390/en17030712