CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review
Abstract
:1. Introduction
1.1. Pre-Chamber Ignition Concept
1.2. Review Objectives
2. Major Achievements of CFD Applications on PCSI Engine Design
3. CFD Modeling PCSI Engines
3.1. CFD Software
3.2. Turbulence Models
3.2.1. RANS Turbulence Models
3.2.2. LES Turbulence Model
3.3. Physical Phenomena and Combustion Models of PCSI Engines
3.3.1. Flamelet Assumption
3.3.2. G-Equation Model
3.3.3. The Extended Coherent Flame Model (ECFM)
3.3.4. The Multizone Well-Stirred Reactor (MZ-WSR) Model
3.4. Turbulence–Chemistry Interaction
3.5. The Well-Tuned Versions of Combustion Models
3.6. Numerical Grid of Pre-Chamber Engine
3.6.1. Mesh Generation for LES Turbulence Model
3.6.2. Mesh Generation for URANS Turbulence Model
3.6.3. Differencing Process
3.7. Time Discretization
3.8. Appropriate Initial and Boundary Conditions
3.8.1. Inflow and Outflow Boundary Conditions of Intake and Exhaust
3.8.2. Wall Heat Transfer Modeling
4. Experimental Validation
5. Critical Issues of CFD Simulation of a PCSI Engine
6. Conclusions and Future Research Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baumgartner, L.S.; Wohlgemuth, S.; Zirngibl, S.; Wachtmeister, G. Investigation of a Methane Scavenged Prechamber for Increased Efficiency of a Lean-Burn Natural Gas Engine for Automotive Applications; SAE Technical Paper 2015-01-0866; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Zhu, S.; Akehurst, S.; Lewis, A.; Yuan, H. A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines. Renew. Sustain. Energy Rev. 2022, 154, 111872. [Google Scholar] [CrossRef]
- Novella, R.; Gomez-Soriano, J.; Martinez-Hernandiz, P.J.; Libert, C.; Rampanarivo, F. Improving the performance of the passive pre-chamber ignition concept for spark-ignition engines fueled with natural gas. Fuel 2021, 290, 119971. [Google Scholar] [CrossRef]
- Wei, H.; Zhu, T.; Shu, G.; Tan, L.; Wang, Y. Gasoline engine exhaust gas recirculation—A review. Appl. Energy 2012, 99, 534–544. [Google Scholar] [CrossRef]
- Bravo, Y.; Larrosa, C.; Lujan, J.; Climent, H.; Rivas, M. Evaluation of EGR System Implementation in a GTDI Engine with Different Configurations: Assessment on Fouling and Corrosion Issues; SAE Technical Paper 2016-01-1016; SAE International: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Uyehara, O.A. Prechamber for Lean Burn for Low Nox; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1995. [Google Scholar]
- Toulson, E.; Watson, H.C.; Attard, W.P. The Effects of Hot and Cool EGR with Hydrogen Assisted Jet Ignition; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Ronney, P.D. Laser versus conventional ignition of flames. Opt. Eng. 1994, 33, 510–521. [Google Scholar] [CrossRef]
- Böker, D.; Brüggemann, D. Advancing lean combustion of hydrogen–air mixtures by laser-induced spark ignition. Int. J. Hydrogen Energy 2011, 36, 14759–14767. [Google Scholar] [CrossRef]
- Getzlaff, J.; Pape, J.; Gruenig, C.; Kuhnert, D.; Latsch, R. Investigations on Pre-Chamber Spark Plug with Pilot Injection; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Benajesa, J.; Novellaa, R.; Gomez-Sorianoa, J.; Martinez-Hernandiza, P.J.; Libertb, C.; Dabirib, M. Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines. Appl. Energy 2019, 248, 576–588. [Google Scholar] [CrossRef]
- Benajesa, J.; Novellaa, R.; Gomez-Sorianoa, J.; Barberya, I.; Libertb, C.; Rampanarivob, F.; Dabiri, M. Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines. Appl. Therm. Eng. 2020, 178, 115501. [Google Scholar] [CrossRef]
- Wang, M.; Leng, X.; He, Z.; Wei, S.; Chen, L.; Jin, Y. A Numerical Study on the Effects of the Orifice Geometry between Pre- and Main Chamber for a Natural Gas Engine; SAE Technical Paper 2017-01-2195; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Onofrio, G.; Napolitano, P.; Tunestål, P.; Beatrice, C. Combustion sensitivity to the nozzle hole size in an active prechamber ultra-lean heavy-duty natural gas engine. Energy 2021, 235, 121298. [Google Scholar] [CrossRef]
- Bozza, F.; De Bellis, V.; Malfi, E.; Teodosio, L.; Tufano, D. Optimal Calibration Strategy of a Hybrid Electric Vehicle Equipped with an Ultra-Lean Pre-Chamber SI Engine for the Minimization of CO2 and Pollutant Emissions. Energies 2020, 13, 4008. [Google Scholar] [CrossRef]
- Assanis, D.; Engineer, N.; Neuman, P.; Wooldridge, M. Computational Development of a Dual Pre-Chamber Engine Concept for Lean Burn Combustion; SAE Technical Paper 2016-01-2242; SAE International: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Attard, W.P.; Toulson, E.; Huisjen, A.; Chen, X.; Zhu, G.; Schock, H. Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization; SAE Technical Paper 2012-01-0823; SAE International: Warrendale, PA, USA, 2012. [Google Scholar]
- Shah, A.; Tunestal, P.; Johansson, B. Effect of Relative Mixture Strength on Performance of Divided Chamber ‘Avalanche Activated Combustion’ Ignition Technique in a Heavy Duty Natural Gas Engine; SAE Technical Paper 2014-01-1327; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Chao, Y.; Hu, K.; Wei, H.; Li, S.; Hu, Y.; Yu, J.; Scholten, I. Geely Jet Ignition System for 52.5% Indicated Thermal Efficiency. In Proceedings of the 43rd International Vienna Motor Symposium, Vienna, Austria, 27–29 April 2022. [Google Scholar]
- Turkish, M.C. 3-Valve Stratified Charge Engines: Evolvement, Analysis and Progression; SAE Technical Paper 741163; SAE International: Warrendale, PA, USA, 1974. [Google Scholar] [CrossRef]
- Dale, J.D.; Oppenheim, A.K. Enhanced Ignition for I.C. Engines with Premixed Gases. SAE Trans. 1981, 90, 810146. [Google Scholar]
- Toulson, E.; Schock, H.J.; Attard, W.P. A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems; SAE Technical Paper 2010-01-2263; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Oppenheim, A.K. Combustion in Piston Engines: Technology, Evolution, Diagnosis and Control; Springer: New York, NY, USA, 2004. [Google Scholar]
- Date, T.; Yagi, S.; Ishizuya, A.; Fujii, I. Research and Development of the Honda CVCC Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1974. [Google Scholar]
- Gentz, G.; Gholamisheeri, M.; Toulson, E. A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization. Appl. Energy 2017, 189, 385–394. [Google Scholar] [CrossRef]
- Toulson, E.; Huisjen, A.; Chen, X.; Squibb, C.; Zhu, G.; Schock, H. Visualization of propane and natural gas spark ignition and turbulent jet ignition combustion. SAE Int. J. Engines 2012, 5, 1821–1835. [Google Scholar] [CrossRef]
- Di Sabatino, F.; Martinez-Hernandiz, P.J.; Novella, R.; Ekoto, I. Investigation of the effects of passive pre-chamber nozzle pattern and ignition system on engine performance and emissions. Int. J. Engine Res. 2023, 24, 2592–2613. [Google Scholar] [CrossRef]
- Xu, G.; Wright, Y.M.; Schiliro, M.; Boulouchos, K. Characterization of combustion in a gas engine ignited using a small un-scavenged pre-chamber. Int. J. Engine Res. 2020, 21, 1085–1106. [Google Scholar] [CrossRef]
- Novella, R.; Gomez-Soriano, J.; Barbery, I.; Libert, C. Numerical analysis of the passive pre-chamber ignition concept for light-duty applications. Appl. Therm. Eng. 2022, 213, 118610. [Google Scholar] [CrossRef]
- Wanker, R. Simulation Methods Covering Recent Technologies for GDI Engines. In Proceedings of the AVL International Simulation Conference, Graz, Austria, 22–24 October 2019. [Google Scholar]
- Vedula, R.T.; Song, R.; Stuecken, T.; Zhu, G.G.; Schock, H. Thermal efficiency of a dual-mode turbulent jet ignition engine under lean and near-stoichiometric operation. Int. J. Engine Res. 2017, 18, 1055–1066. [Google Scholar] [CrossRef]
- Mastorakos, E.; Allison, P.; Giusti, A.; De Oliveira, P.; Benekos, S.; Wright, Y.; Frouzakis, C.; Boulouchos, K. Fundamental aspects of jet ignition for natural gas engines. SAE Int. J. Engines 2017, 10, 2429–2438. [Google Scholar] [CrossRef]
- Allison, P.; de Oliveira, M.; Giusti, A.; Mastorakos, E. Pre-chamber ignition mechanism: Experiments and simulations on turbulent jet flame structure. Fuel 2018, 230, 274–281. [Google Scholar] [CrossRef]
- Bunce, M.; Blaxill, H. Methodology for combustion analysis of a spark ignition engine incorporating a pre-chamber combustor. In Proceedings of the SAE 2014 International Powertrain, Fuels & Lubricants Meeting, Birmingham, UK, 20–23 October 2014; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Benajes, J.; Novella, R.; Gomez-Soriano, J.; Barbery, I.; Libert, C. Advantages of hydrogen addition in a passive pre-chamber ignited SI engine for passenger car applications. Int. J. Energy Res. 2021, 45, 13219–13237. [Google Scholar] [CrossRef]
- Dong, D.; Wei, M.; Zhang, Z.; Wei, F.; Long, W.; Dong, P.; Tian, J.; Lu, M.; Wang, R.; Xiao, G. Enhanced ignition possibilities of ammonia by the prechamber fueled methanol: Rich, stoichiometric and lean combustion evaluations. Sustain. Energy Technol. Assess. 2024, 64, 103723. [Google Scholar] [CrossRef]
- Liu, X.; Aljabri, H.; Panthi, N.; AlRamadan, A.S.; Cenker, E.; Alshammari, A.T.; Magnotti, G.; Im, H.G. Computational study of hydrogen engine combustion strategies: Dual-Fuel compression ignition with Port- and Direct-Injection, Pre-Chamber Combustion, and Spark-Ignition. Fuel 2023, 350, 128801. [Google Scholar] [CrossRef]
- Liu, X.; Aljabri, H.; Panthi, N.; AlRamadan, A.S.; Cenker, E.; Alshammari, A.T.; Magnotti, G.; Im, H.G. Hydrogen pre-chamber combustion at lean-burn conditions on a heavy-duty diesel engine: A computational study. Fuel 2023, 335, 127042. [Google Scholar] [CrossRef]
- Biswas, S.; Qiao, L. Ignition of ultra-lean premixed H2/air using multiple hot turbulent jets generated by pre-chamber combustion. Appl. Therm. Eng. 2018, 132, 102–114. [Google Scholar] [CrossRef]
- Thelen, B.C.; Toulson, E. A computational study on the effect of the orifice size on the performance of a turbulent jet ignition system. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 536–554. [Google Scholar] [CrossRef]
- Biswas, S.; Qiao, L. Ignition of ultra-lean premixed hydrogen/air by an impinging hot jet. Appl. Energy 2018, 228, 954–964. [Google Scholar] [CrossRef]
- Trombley, G.; Toulson, E. A fuel-focused review of pre-chamber initiated combustion. Energy Convers. Manag. 2023, 298, 117765. [Google Scholar] [CrossRef]
- Alvarez, C.E.C.; Couto, G.E.; Roso, V.R.; Thiriet, A.B.; Valle, R.M. A review of prechamber ignition systems as lean combustion technology for SI engines. Appl. Therm. Eng. 2018, 128, 107–120. [Google Scholar] [CrossRef]
- Zhou, L.; Zhong, L.; Liu, Z.; Wei, H. Toward highly-efficient combustion of ammonia–hydrogen engine: Prechamber turbulent jet ignition. Fuel 2023, 352, 129009. [Google Scholar] [CrossRef]
- Hlaing, P.; Echeverri Marquez, M.; Cenker, E.; Im, H.G.; Johansson, B.; Turner, J.W.G. CFD-based methodology for the characterization pre-chamber combustion engines. Fuel 2022, 313, 123029. [Google Scholar] [CrossRef]
- Shah, A.; Tunestal, P.; Johansson, B. Effect of Pre-Chamber Volume and Nozzle Diameter on Pre-Chamber Ignition in Heavy Duty Natural Gas Engines; SAE Technical Paper 2015-01-0867; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Silva, M.; Sanal, S.; Hlaing, P.; Cenker, E.; Johansson, B.; Im, H.G. Effects of Geometry on Passive Pre-Chamber Combustion Characteristics; SAE Technical Paper 2020-01-0821; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Distaso, E.; Amirante, R.; Cassone, E.; De Palma, P.; Sementa, P.; Tamburrano, P.; Vaglieco, B.M. Analysis of the combustion process in a lean-burning turbulent jet ignition engine fueled with methane. Energy Convers. Manag. 2020, 223, 113257. [Google Scholar] [CrossRef]
- Gholamisheeri, M.; Thelen, B.; Toulson, E. CFD Modeling and Experimental Analysis of a Homogeneously Charged Turbulent Jet Ignition System in a Rapid Compression Machine; SAE Technical Paper 2017-01-0557; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Thelen, B.C.; Gentz, G.; Toulson, E. Computational Study of a Turbulent Jet Ignition System for Lean Burn Operation in a Rapid Compression Machine; SAE Technical Paper 2015-01-0396; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Gentz, G.; Thelen, B.; Litke, P.; Hoke, J.; Toulson, E. Combustion visualization, performance, and CFD modeling of a pre-chamber turbulent jet ignition system in a rapid compression machine. SAE Int. J. Engines 2015, 8, 538–546. [Google Scholar] [CrossRef]
- Bolla, M.; Shapiro, E.; Tiney, N.; Kyrtatos, P.; Kotzagianni, M.; Boulouchos, K. Numerical Simulations of Pre-Chamber Combustion in an Optically Accessible RCEM; SAE Technical Paper 2019-01-0224; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Shapiro, E.; Ahmed, I.; Tiney, N. Advanced ignition modelling for pre-chamber combustion in lean burn gas engines. In Proceedings of the Ignition Systems for Gasoline Engines: Internationale Tagung Zündsysteme für Ottomotoren, Berlin, Germany, 6–7 December 2018; p. 104. [Google Scholar]
- Bolla, M.; Shapiro, E.; Tiney, N.; Kyrtatos, P.; Kotzagianni, M.; Boulouchos, K. Numerical Study of Turbulence and Fuel-Air Mixing within a Scavenged Pre-Chamber Using RANS and LES; SAE Technical Paper 2019-01-0198; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Fei, Q.; Shah, A.; Zhi-wei, H.; Li-na, P.; Tunestal, P.; Xue-Song, B. Detailed numerical simulation of transient mixing and combustion of premixed methane/air mixtures in a pre-chamber/main-chamber system relevant to internal combustion engines. Combust. Flame 2018, 188, 357–366. [Google Scholar]
- Sforza, L.; Lucchini, T.; Gianetti, G.; D’Errico, G.; Onofrio, G.; Beatrice, C.; Tunestal, P. A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas; SAE Technical Paper 2022-01-0470; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Yin, Y.; Lei, Y.; Shen, H.; Yi, Y.; Zhao, T.; Qiu, T. Modeling Investigation on Transient Behaviors of Gaseous Ammonia Jet Flow with Direct Injection. Fuel 2024, 358, 129997–130011. [Google Scholar] [CrossRef]
- Shapiro, E.; Tiney, N.; Kyrtatos, P.; Kotzagianni, M.; Bolla, M.; Boulouchos, K.; Tallu, G.; Lucas, G.; Weissner, M. Experimental and Numerical Analysis of Pre-Chamber Combustion Systems for Lean Burn Gas Engines; SAE Technical Paper 2019-01-0260; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Vavra, J.; Syrovatka, Z.; Vitek, O.; Macek, J.; Takats, M. Development of a Pre-Chamber Ignition System for Light Duty Truck Engine; SAE Technical Paper 2018-01-1147; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, S.; Han, Z. Combustion characteristics and misfire mechanism of a passive pre-chamber direct-injection gasoline engine. Fuel 2023, 352, 129067. [Google Scholar] [CrossRef]
- Piano, A.; Scalambro, A.; Millo, F.; Catapano, F.; Sementa, P.; Di Iorio, S.; Bianco, A. CFD-based methodology for the characterization of the combustion process of a passive pre-chamber gasoline engine. Transp. Eng. 2023, 13, 100200. [Google Scholar] [CrossRef]
- Peethambaram, M.R.; Zhou, Q.; Waters, B.; Pendlebury, K.; Fu, H.; Haines, A.; Hale, D.; Hu, T.; Zhang, J.; Wu, X.; et al. Combustion Analysis of Active Pre-Chamber Design for Ultra-Lean Engine Operation. SAE Int. J. Engines 2024, 17, 705–720. [Google Scholar] [CrossRef]
- Kim, J.; Scarcelli, R.; Som, S.; Shah, A.; Biruduganti, M.S.; Longman, D.E. Numerical Investigation of a Fueled Pre-Chamber Spark-Ignition Natural Gas Engine. Int. J. Engine Res. 2021, 23, 1475–1494. [Google Scholar] [CrossRef]
- Kim, J.; Scarcelli, R.; Som, S.; Shah, A.; Biruduganti, M.S.; Longman, D.E. Assessment of turbulent combustion models for simulating prechamber ignition in a natural gas engine. J. Eng. Gas Turbines Power 2021, 143, 091004. [Google Scholar] [CrossRef]
- Silva, M.; Liu, X.; Hlaing, P.; Sanal, S.; Cenker, E.; Chang, J.; Johansson, B.; Im, H.G. Computational assessment of effects of throat diameter on combustion and turbulence characteristics in a pre-chamber engine. Appl. Therm. Eng. 2022, 212, 118595. [Google Scholar] [CrossRef]
- Zhao, P.; Ge, H.; Parameswaran, S. CFD-guided development of a pre-chamber ignition system for internal combustion engines. Int. J. Powertrains 2021, 10, 79–103. [Google Scholar] [CrossRef]
- Syrovatka, Z.; Vitek, O.; Vavra, J.; Takats, M. Scavenged Pre-Chamber Volume Effect on Gas Engine Performance and Emissions; SAE Technical Paper 2019-01-0258; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Kyrtatos, P.; Bolla, M.; Benekos, S.; Bardis, K.; Xu, G.; Kotzagianni, M.; Wright, Y.M.; Giannakopoulos, G.; Frouzakis, C.E.; Boulouchos, K. Advanced Methods for Gas-Prechamber Combustion Research and Model Development. In Proceedings of the 16th Conference, The Working Process of the Internal Combustion Engine, Graz, Austria, 28–29 September 2017; pp. 167–183. [Google Scholar]
- Wang, B.; Xie, F.; Hong, W.; Du, J.; Chen, H.; Su, Y. The effect of structural parameters of pre-chamber with turbulent jet ignition system on combustion characteristics of methanol-air pre-mixture. Energy Convers. Manag. 2022, 274, 116473. [Google Scholar] [CrossRef]
- Convergent Science Inc. Converge 2.3 Theory Manual; Convergent Science Inc.: Madison, WI, USA, 2017. [Google Scholar]
- Siemens PLM. STAR-CD 12.02, Simcenter, Userguide; Simens: Plano, TX, USA, 2020. [Google Scholar]
- AVL. AVL FIRE, Software Documentation, Version 2021 R2; AVL: Graz, Austria, 2021. [Google Scholar]
- Ricardo Software Ltd. VECTIS CFD Release 2017.1 Theory Manual; Ricardo PLC: London, UK, 2017. [Google Scholar]
- Amsden, A.A. KIVA-3V, Release2 A Block-Structured KIVA Program for Engines with Vertical or Canted Valve; LA-UR-97-689; Los Alamos National Laboratory: Los Alamos, NM, USA, 1997. [Google Scholar]
- The OpenFOAM Foundation. OpenFOAM v2206; The OpenFOAM Foundation: London, UK, 2022. [Google Scholar]
- Xu, G.; Wright, Y.M.; Kyrtatos, P.; Bardis, K.; Schiliro, M.; Boulouchos, K. Experimental and Numerical Investigation of the Engine Operational Conditions’ Influences on a Small Un-Scavenged Pre-Chamber’s Behavior. SAE Int. J. Engines 2017, 10, 2414–2428. [Google Scholar] [CrossRef]
- Wu, X.; Feng, Y.; Gao, Y.; Xia, C.; Zhu, Y.; Shreka, M.; Ming, P. Numerical simulation of lean premixed combustion characteristics and emissions of natural gas-ammonia dual-fuel marine engine with the pre-chamber ignition system. Fuel 2023, 343, 127990. [Google Scholar] [CrossRef]
- Silva, M.; Mohan, B.; Badra, J.; Zhang, A.; Hlaing, P.; Cenker, E.; AlRamadan, A.S.; Im, H.G. DoE-ML guided optimization of an active pre-chamber geometry using CFD. Int. J. Engine Res. 2022, 24, 2936–2948. [Google Scholar] [CrossRef]
- Krajnović, J.; Sjerić, M.; Tomić, R.; Kozarac, D. A novel concept of active pre-chamber engine with a single injector—The passive main chamber approach. Appl. Therm. Eng. 2024, 250, 123509. [Google Scholar] [CrossRef]
- Kammel, G.; Mair, F.; Zelenka, J.; Lackner, M.; Wimmer, A.; Kogler, G.; Bärow, E. Simulation Based Predesign and Experimental Validation of a Prechamber Ignited HPDI Gas Combustion Concept; SAE Technical Paper 2019-01-0259; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Beran, R.; Wimmer, A. Application of 3D-CFD Methods to Optimize a Gaseous Fuelled Engine with Respect to Charge Motion, Combustion and Knocking; SAE Technical Paper 2000-01-0277; SAE International: Warrendale, PA, USA, 2000. [Google Scholar]
- Shin, J.; Choi, J.; Seo, J.; Park, S. Pre-chamber combustion system for heavy-duty engines for operating dual fuel and diesel modes. Energy Convers. Manag. 2022, 255, 115365. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Feng, Y.; Lu, Z.; Sun, K. Synergistic effect of swirl flow and prechamber jet on the combustion of a natural gas-diesel dual-fuel marine engine. Fuel 2022, 325, 124935. [Google Scholar] [CrossRef]
- Wu, X.; Feng, Y.; Xu, G.; Zhu, Y.; Ming, P.; Dai, L. Numerical investigations on charge motion and combustion of natural gas-enhanced ammonia in marine pre-chamber lean-burn engine with dual-fuel combustion system. Int. J. Hydrogen Energy 2023, 48, 11476–11492. [Google Scholar] [CrossRef]
- Dempsey, A.B.; Zeman, J.; Wall, M. A System to Enable Mixing Controlled Combustion with High Octane Fuels Using a Prechamber and High-Pressure Direct Injector. Front. Mech. Eng. 2021, 7, 637665. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, R.; Lin, H.; Jin, Z.; Qian, Y.; Zhou, D.; Yin, Y.; Li, Z.; Lu, X. Computational insights into flame development and emission formation in an ammonia engine with hydrogen-assisted pre-chamber turbulent jet ignition. Energy Convers. Manag. 2024, 314, 118706. [Google Scholar] [CrossRef]
- Oliveira, W.P.; Mendonça, M.S.; Chavda, N.B.; Rodrigues Filho, F.A.; Baeta, J.G.C. Numerical and experimental analysis of the combustion in a Single-Cylinder research engine with passive TJI pre-chamber operating with hydrated ethanol. Energy Convers. Manag. 2024, 310, 118459. [Google Scholar] [CrossRef]
- Chinnathambi, P.; Bunce, M.; Cruff, L. RANS Based Multidimensional Modeling of an Ultra-Lean Burn PreChamber Combustion System with Auxiliary Liquid Gasoline Injection; SAE Technical Paper 2015-01-0386; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Xu, L.; Li, G.; Yao, M.; Zheng, Z.; Wang, H. Numerical Investigation on the Jet Characteristics and Combustion Process of an Active Prechamber Combustion System Fueled with Natural Gas. Energies 2022, 15, 5356. [Google Scholar] [CrossRef]
- Gholamisheeri, M.; Wichman, I.S.; Toulson, E. A study of the turbulent jet flow field in a methane fueled turbulent jet ignition (TJI) system. Combust. Flame 2017, 183, 194–206. [Google Scholar] [CrossRef]
- Silva, M.; Liu, X.; Hlaing, P.; Cenker, E.; Turner, J.; Im, H.G. A Computational Assessment of Combustion Submodels for Predictive Simulations of Pre-Chamber Combustion Engines. In Proceedings of the ASME 2022 ICE Forward Conference, Indianapolis, IN, USA, 16–19 October 2022. [Google Scholar]
- Thelen, B.; Toulson, E. A Computational Study of the Effects of Spark Location on the Performance of a Turbulent Jet Ignition System; SAE Technical Paper 2016-01-0608; SAE International: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Jamrozik, A.; Tutak, W.; Kociszewski, A.; Sosnowski, M. Numerical simulation of two-stage combustion in SI engine with prechamber. Appl. Math. Model. 2013, 37, 2961–2982. [Google Scholar] [CrossRef]
- Borghi, F.T.; Moreira, T.A.A.; Whanco, R.; Barros, J.E.M.; Valle, R.M. Aerodynamic In-Cylinder Flow Simulation in an Internal Combustion Engine with Torch Ignition System; SAE Technical Paper 2014-36-0298; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Hernández, I.; Shapiro, E.; Tiney, N.; Kotzagianni, M.; Kyrtatos, P.; Boulouchos, K. Flame-wall interaction modelling for pre-chamber combustion in lean burn gas engines. In Proceedings of the 35th International CAE Conference and Exhibition (CAE 2018), Vicenza, Italy, 8–9 October 2018. [Google Scholar] [CrossRef]
- Miccichè, S. Comparison of Optimization Methods for Prechamber Spark Plug Operations in Natural Gas Engines Using CFD-Simulation. Master’s Thesis, Mechanical Engineering, Institut für Kolbenmaschinen (IFKM), Karlsruhe, Germany, 2019. [Google Scholar]
- Nodi, A.; Sforza, L.; Lucchini, T.; Onorati, A.; Buttitta, M.; Marmorini, L. CFD Modeling of Conventional and Pre-Chamber Ignition of a High-Performance Naturally Aspirated Engine; SAE Technical Paper 2024-01-2102; SAE International: Warrendale, PA, USA, 2024. [Google Scholar] [CrossRef]
- Addabbo, A. A CFD Methodology for the Design of Active Prechambers in SI Engines. Master’s Thesis, Mechanical Engineering, Politecnico, Italy, 2023. [Google Scholar]
- Posch, S.; Gößnitzer, C.; Rohrhofer, F.M.; Geiger, B.; Wimmer, A. Finding the Optimum Design of Large Gas Engines Prechambers using CFD and Bayesian Optimization. In Scientific Computing 2023: Conference Proceedings; Granigg, W., Ed.; Verlag der FH JOANNEUM Gesellschaft mbH: Graz, Austria, 2023; pp. 160–168. [Google Scholar]
- Krajnovic, J.; Dilber, V.; Tomic, R.; Sjeric, M.; Ilincic, P.; Kozarac, D. Numerical Simulations of Pre-Chamber Induced HCCI Combustion (PC-HCCI); SAE Technical Paper 2023-01-0274; SAE International: Warrendale, PA, USA, 2023. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cornell University: New York, NY, USA, 2000; ISBN 9780521598866. [Google Scholar]
- Hanjalic, K. Will RANS survive LES? A view of perspectives. J. Fluid Eng. 2005, 127, 831–839. [Google Scholar] [CrossRef]
- Davidson, L. Fluid Mechanics, Turbulent Flow and Turbulence Modeling; Chalmers University of Technology: Goteborg, Sweden, 2024. [Google Scholar]
- Chen, C.-J.; Jaw, S.-Y. Fundamentals of Turbulence Modeling; Taylor & Francis: New York, NY, USA, 1998; ISBN 1-56032-405-8. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD, 2nd ed.; DCW Industries Inc.: La Canada, CA, USA, 1994. [Google Scholar]
- Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 1992, 4, 1510–1520. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics-the Finite Volume Method, 2nd ed.; Pearson Education: Tamil Nadu, India, 2007. [Google Scholar]
- The Smagorinsky Turbulence Model (Part 2). Fluid Mechanics 101, YouTube Channel. Available online: https://www.youtube.com/watch?v=GdXLyfRK188&t=992s (accessed on 1 June 2024).
- Durbin, P.A.; Pettersson Reif, B.A. Statistical Theory and Modeling for Turbulent Flows; Wiley: Hoboken, NJ, USA, 2001; ISBN 0471497363. [Google Scholar]
- Nzebuka, G.G.; Waheed, M.A. Thermal evolution in the direct chill casting of an Al-4 pct Cu alloy using the low-Reynolds number turbulence model. Int. J. Therm. Sci. 2020, 147, 106152. [Google Scholar] [CrossRef]
- Hanjalić, K.; Popovac, M.; Hadžiabdić, M. A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 2004, 25, 1047–1051. [Google Scholar] [CrossRef]
- Durbin, P.A. Near-wall turbulence closure modeling without “damping functions”. Theor. Comput. Fluid Dyn. 1991, 3, 1–13. [Google Scholar] [CrossRef]
- Durbin, P.A. A Reynolds Stress Model for Near-wall Turbulence. J. Fluid Mech. 1993, 249, 465–498. [Google Scholar] [CrossRef]
- Sunden, B.; Faghri, M. Modelling and Simulation of Turbulent Heat Transfer; WIT Press: Southampton, UK, 2005; ISBN 978-1-85312-956-8. [Google Scholar]
- Wu, X.; Durbin, P.A. Numerical simulation of heat transfer in a transitional boundary layer with passing wakes. J. Heat Transf. 1999, 122, 248–257. [Google Scholar] [CrossRef]
- Spall, R.E. An Assessment of k-w and v2-f Turbulence Models for Strongly Heated Internal Gas Flows. Numer. Heat Transf. Part A 2004, 46, 831–849. [Google Scholar] [CrossRef]
- Argyropoulos, C.D.; Markatos, N.C. Recent advances on the numerical modelling of turbulent flows. Appl. Math. Model. 2015, 39, 693–732. [Google Scholar] [CrossRef]
- Smyth, T.A.G. A review of computational fluid dynamics (CFD) airflow modelling over aeolian landforms. Aeolian Res. 2016, 22, 153–164. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hama, F.; Wu, X. Application of a Local SGS Model Based on Coherent Structures to Complex Geometries. Int. J. Heat Fluid Flow 2008, 29, 640–653. [Google Scholar] [CrossRef]
- Ansys, Inc. Fluent 18.0 User’s Guide; Ansys, Inc.: Canonsburg, PA, USA, 2017. [Google Scholar]
- CHAM, PHOENICS v.1.0 User’s Guide, October 2022. Available online: https://www.cham.co.uk/phoenics/d_polis/d_docs/tr316/tr316.pdf (accessed on 1 February 2024).
- Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H. A Dynamic Subgrid-Scale Eddy Viscosity Model. Phys. Fluids A 1991, 3, 1760–1765. [Google Scholar] [CrossRef]
- Lilly, D.K. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 1992, 4, 633–635. [Google Scholar] [CrossRef]
- Nicoud, F.; Ducros, F. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3319168739. [Google Scholar]
- Yoshizawa, A. Statistical Theory for Compressible Turbulent Shear Flows, with the Application to Subgrid Modeling. Phys. Fluids 1986, 29, 2152–2164. [Google Scholar] [CrossRef]
- Kyrtatos, P.; Bardis, K.; Bolla, M.; Denisov, A.; Wright, Y.; Herrmann, K.; Boulouchos, K. Transferability of Insights from Fundamental Investigations into Practical Applications of Prechamber Combustion Systems. In Proceedings of the Ignition Systems for Gasoline Engines: Internationale Tagung Zündsysteme für Ottomotoren, Berlin, Germany, 6–7 December 2018; p. 442. [Google Scholar]
- Zhou, L.; Liu, P.; Zhong, L.; Feng, Z.; Wei, H. Experimental observation of lean flammability limits using turbulent jet ignition with auxiliary hydrogen and methane in pre-chamber. Fuel 2021, 305, 121570. [Google Scholar] [CrossRef]
- Xu, G.; Kotzagianni, M.; Kyrtatos, P.; Wright, Y.M.; Boulouchos, K. Experimental and numerical investigations of the unscavenged prechamber combustion in a rapid compression and expansion machine under engine-like conditions. Combust. Flame 2019, 204, 68–84. [Google Scholar] [CrossRef]
- Rajasegar, R.; Niki, Y.; Garcia-Oliver, J.M.; Li, Z.; Musculus, M.P.B. Fundamental insights on ignition and combustion of natural gas in an active fueled prechamber spark-ignition system. Combust. Flame 2021, 232, 111561. [Google Scholar] [CrossRef]
- Atis, C.; Chowdhury, S.S.; Ayele, Y.; Stuecken, T.; Schock, H.; Voice, A.K. Ultra-Lean and High EGR Operation of Dual Mode, Turbulent Jet Ignition (DM-TJI) Engine with Active Pre-Chamber Scavenging; SAE Technical Paper 2020-01-1117; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Iacovano, C.; d’Adamo, A.; Cantore, G. Analysis and Simulation of Non-Flamelet Turbulent Combustion in a Research Optical Engine. Energy Procedia 2018, 148, 463–470. [Google Scholar] [CrossRef]
- Dekena, M.; Peters, N. Combustion Modeling with the G-Equation. Oil Gas Sci. Technol. 1999, 54, 265–270. [Google Scholar]
- Stiesch, G. Modeling Engine Spray and Combustion Processes; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Peters, N. Turbulent Combustion. Cambridge Monographs on Mechanics, 4th ed.; Cambridge University Press: Cambridge, UK, 2006; ISBN 9780521660822. [Google Scholar]
- Chinnan, J.A. Simulation and Validation of In-Cylinder Combustion for a Heavy-Duty Otto Gas Engine Using 3D-CFD Technique. Master’s Thesis, KTH Industrial Engineering and Management Machine Design, Stockholm, Sweden, 2018. [Google Scholar]
- Ferziger, J.H.; Perić, M.; Street, R.L. Computational Methods for Fluid Dynamics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Ewald, J.; Peters, N. On unsteady premixed turbulent burning velocity prediction in internal combustion engines. Proc. Combust. Inst. 2007, 31, 3051–3058. [Google Scholar] [CrossRef]
- Gulder, O.L. Turbulent Premixed Flame Propagation Models for Different Combustion Regimes; The Combustion Institute: Pittsburgh, PA, USA, 1990; pp. 743–750. [Google Scholar]
- Bradley, D.; Lau, A.K.C.; Lawes, M. Flame stretch rate as a determinant of turbulent burning velocity. Philos. Trans. R. Soc. Lond. 1992, 338, 359–387. [Google Scholar] [CrossRef]
- Meneveau, C.; Poinsot, T. Stretching and quenching of flamelets in Premixed turbulent combustion. Combust. Flame 1991, 86, 311–332. [Google Scholar] [CrossRef]
- Lu, T.; Law, C.K. A Criterion Based on Computational Singular Perturbation for the Identification of Quasi Steady State Species: A Reduced Mechanism for Methane Oxidation with NO Chemistry. Combust. Flame 2008, 154, 761–774. [Google Scholar] [CrossRef]
- Toulson, E. Applying Alternative Fuels in Place of Hydrogen to the Jet Ignition Process. Ph.D. Thesis, Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, Australia, 2009. [Google Scholar]
- Veynante, D.; Vervisch, L. Turbulent Combustion Modeling. Prog. Energy Combust. Sci. 2002, 28, 193–266. [Google Scholar] [CrossRef]
- Suillaud, E. Modelling of High Karlovitz Combustion in Spark-Ignition Engines. Ph.D. Thesis, Chemical and Process Engineering, Université Paris-Saclay, Gif-sur-Yvette, France, 2021. [Google Scholar]
- Meneveau, C.; Sreenivasan, K.R. The Multifractal Nature of Turbulent Energy Dissipation. J. Fluid Mech. 1991, 224, 429–484. [Google Scholar] [CrossRef]
- Salerno, F.; Bargende, M.; Kulzer, A.; Grill, M.; Burkardt, P.; Günther, M.; Pischinger, S.; Villforth, J. A Quasi-Dimensional Burn Rate Model for Pre-Chamber-Initiated Jet Ignition Combustion. SAE Int. J. Adv. Curr. Pract. Mobil. 2023, 5, 2258–2277. [Google Scholar] [CrossRef]
- Kim, J.; Scarcelli, R.; Som, S.; Shah, A.; Biruduganti, M.S.; Longman, D.E. Evaluation of Combustion Models for CFD Simulation of Pre-Chamber Ignition in a Natural Gas Engine. In Proceedings of the 11th U.S. National Combustion Meeting, Pasadena, CA, USA, 24–27 March 2019. [Google Scholar]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 1980. [Google Scholar]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-25202-3. [Google Scholar]
- Ikegaya, N.; Okaze, T.; Kikumoto, H.; Imano, M.; Ono, H.; Tominaga, Y. Effect of the numerical viscosity on reproduction of mean and turbulent flow fields in the case of a 1:1:2 single block model. J. Wind Eng. Ind. Aerodyn. 2019, 191, 279–296. [Google Scholar] [CrossRef]
- GAMMA Technologies. GT-SUITE. 2024. Available online: https://www.gtisoft.com/gt-suite/ (accessed on 1 June 2024).
- Benson, R.S.; Horlock, J.H.; Winterbone, D.E. The Thermodynamics and Gas Dynamics of Internal-Combustion Engines; Clarendon Press: Oxford, UK, 1982. [Google Scholar]
- Bozza, F.; De Bellis, V.; Tufano, D.; Malfi, E.; Müller, C.; Habermann, K. A Quasi-Dimensional Model of Pre-Chamber Spark-Ignition Engines; SAE Technical Paper 2019-01-0470; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- De Bellis, V.; Bozza, F.; Fontanesi, S.; Severi, E.; Berni, F. Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine. SAE Int. J. Engines 2016, 9, 506–519. [Google Scholar] [CrossRef]
- Berni, F.; Cicalese, G.; Fontanesi, S. A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines. Appl. Therm. Eng. 2017, 115, 1045–1062. [Google Scholar] [CrossRef]
- Reitz, R. Assessment of Wall Heat Transfer Models for Premixed-Charge Engine Combustion Computations; SAE Technical Paper 910267; SAE International: Warrendale, PA, USA, 1991. [Google Scholar] [CrossRef]
- Jayatilleke, C.L.V. The influence of Prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer. In Progress in Heat and Mass Transfer; Pergamon Press: Oxford, UK, 1969; Volume 1. [Google Scholar]
- Kays, W.M.; Crawford, M.E. Convective Heat and Mass Transfer, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Angelberger, C.; Poinsot, T.; Delhay, B. Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations; SAE Technical Paper 972881; SAE International: Warrendale, PA, USA, 1997. [Google Scholar] [CrossRef]
- Han, Z.; Reitz, R.D. A temperature wall function formulation for variable density turbulent flows with application to engine convective heat transfer modeling. Int. J. Heat Mass Transf. 1997, 40, 613–625. [Google Scholar] [CrossRef]
- Dou, X.; Yosri, M.; Talei, M.; Yang, Y. Impact of wall heat transfer modelling in large-eddy simulation of hydrogen knocking combustion. Int. J. Hydrogen Energy 2024, 62, 405–417. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals, 2nd ed.; McGraw-Hill: New York, NY, USA, 2018. [Google Scholar]
- Rakopoulos, C.D.; Kosmadakis, G.M.; Pariotis, E.G. Critical evaluation of current Heat transfer models used in CFD in-cylinder engine simulations and establishment of a comprehensive wall-function formulation. Appl. Energy 2010, 87, 1612–1630. [Google Scholar] [CrossRef]
- Torregrosa, A.J.; Broatch, A.; Gil, A.; Gomez-Soriano, J. Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Appl. Acoust. 2018, 135, 91–100. [Google Scholar] [CrossRef]
- Hiraoka, K.; Nomura, K.; Yuuki, A.; Oda, Y.; Kameyama, T. Phenomenological 0 Dimensional Combustion Model for Spark-Ignition Natural Gas Engine Equipped with Pre-Chamber; SAE Technical Paper 2016-01-0556; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Le Guen, S.; Maiboom, A.; Bougrine, S.; Tauzia, X. Analysis of Systematic Calibration of Heat Transfer Models on a Turbocharged GDI Engine Operating Map; SAE Technical Paper 2018-01-0787; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Silva, M.; Sanal, S.; Hlaing, P.; Cenker, E.; Bengt, J.; Hong, G.I. A Computational Investigation of Fuel Enrichment in the Pre-Chamber on the Ignition of the Main Chamber Charge; SAE Technical Paper 2021-01-0523; SAE International: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-J. CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review. Energies 2024, 17, 4696. https://doi.org/10.3390/en17184696
Jeong S-J. CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review. Energies. 2024; 17(18):4696. https://doi.org/10.3390/en17184696
Chicago/Turabian StyleJeong, Soo-Jin. 2024. "CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review" Energies 17, no. 18: 4696. https://doi.org/10.3390/en17184696
APA StyleJeong, S. -J. (2024). CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review. Energies, 17(18), 4696. https://doi.org/10.3390/en17184696