The Dynamics of Energy-Related Carbon Emissions and Their Influencing Factors in the Yangtze River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Evaluation of Energy-Related Carbon Emission
2.4. Tapio Decoupling Analysis
2.5. LMDI Factor Decomposition Model
3. Results
3.1. Spatio-Temporal Dynamics of ERCEs
3.2. Dynamics of Energy Structure in Different Cities
3.3. Decoupling between Economic Growth and ERCEs
3.4. Influencing Factors of ERCEs
4. Discussion
4.1. A Win–Win Situation between ERCE Reduction and Economic Growth
4.2. Policy Implications for Carbon Reduction
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: Mitigation of Climate Change; Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Jiang, T.; Li, S.; Yu, Y.; Peng, Y. Energy-related carbon emissions and structural emissions reduction of China’s construction industry: The perspective of input–output analysis. Environ. Sci. Pollut. Res. 2022, 29, 39515–39527. [Google Scholar] [CrossRef]
- Rozenberg, J.; Davis, S.J.; Narloch, U.; Hallegatte, S. Climate constraints on the carbon intensity of economic growth. Environ. Res. Lett. 2015, 10, 095006. [Google Scholar] [CrossRef]
- Shokoohi, Z.; Dehbidi, N.K.; Tarazkar, M.H. Energy intensity, economic growth and environmental quality in populous Middle East countries. Energy 2022, 239, 122164. [Google Scholar] [CrossRef]
- Zhang, Y.; Da, Y. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 2015, 41, 1255–1266. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, M.; Zhou, M.; Zhou, M. A comparative study on decoupling relationship and influence factors between China’s regional economic development and industrial energy–related carbon emissions. J. Clean. Prod. 2017, 142, 783–800. [Google Scholar] [CrossRef]
- Waheed, R.; Sarwar, S.; Chen, W. The survey of economic growth, energy consumption and carbon emission. Energy Rep. 2019, 5, 1103–1115. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, Y.; Yuan, J.; Zhang, S.; Hessen, D.O.; Tian, H.; Obersteiner, M.; Chen, D. Drivers of change in China’s energy-related CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 29–36. [Google Scholar] [CrossRef] [PubMed]
- IEA. CO2 Emissions from Fuel Combustion; IEA: Paris, France, 2021. [Google Scholar]
- Salman, M.; Long, X.; Dauda, L.; Mensah, C.N. The impact of institutional quality on economic growth and carbon emissions: Evidence from Indonesia, South Korea and Thailand. J. Clean. Prod. 2019, 241, 118331. [Google Scholar] [CrossRef]
- Huh, T. Comparative and relational trajectory of economic growth and greenhouse gas emission: Coupled or decoupled? Energies 2020, 13, 2550. [Google Scholar] [CrossRef]
- Mireille, C.A.; Mouez, F.; Yassine, K. Carbon curse in developed countries. Energy Econ. 2020, 90, 104829. [Google Scholar]
- Wang, Q.; Guo, J.; Li, R.; Jiang, X.-T. Exploring the role of nuclear energy in the energy transition: A comparative perspective of the effects of coal, oil, natural gas, renewable energy, and nuclear power on economic growth and carbon emissions. Environ. Res. 2023, 221, 115290. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Huang, Z.; Wu, H. Do carbon emissions and economic growth decouple in China? An empirical analysis based on provincial panel data. Energies 2019, 12, 2411. [Google Scholar] [CrossRef]
- Meng, L.; Graus, W.; Worrell, E.; Huang, B. Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program’s Operational Linescan System) nighttime light imagery: Methodological challenges and a case study for China. Energy 2014, 71, 468–478. [Google Scholar] [CrossRef]
- Magazzino, C. Economic growth, CO2 emissions and energy use in Israel. Int. J. Sustain. Dev. World Ecol. 2015, 22, 89–97. [Google Scholar]
- Lenzen, M.; Schaeffer, R.; Karstensen, J.; Peters, G.P. Drivers of change in Brazil’s carbon dioxide emissions. Clim. Chang. 2013, 121, 815–824. [Google Scholar] [CrossRef]
- Duan, H.; Mo, J.; Fan, Y.; Wang, S. Achieving China’s energy and climate policy targets in 2030 under multiple uncertainties. Energy Econ. 2018, 70, 45–60. [Google Scholar] [CrossRef]
- Brinkley, C. Decoupled: Successful planning policies in countries that have reduced per capita greenhouse gas emissions with continued economic growth. Environ. Plan. C-Gov. Policy 2014, 32, 1083–1099. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Zhang, X.; Yang, Y.; Su, Y.; Ye, Y.; Zhang, H. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sustain. Energy Rev. 2017, 67, 51–61. [Google Scholar] [CrossRef]
- Strachan, N.; Foxon, T.; Fujino, J. Policy implications from the Low-Carbon Society (LCS) modelling project. Clim. Policy 2008, 8, S17–S29. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, Y.; Hang, Y.; Zheng, H.; Li, Y.; Guan, D.; Li, J.; Zhou, Y.; Li, L.; Hubacek, K. City-level emission peak and drivers in China. Sci. Bull. 2022, 67, 1910–1920. [Google Scholar] [CrossRef]
- Shen, L.; Wu, Y.; Lou, Y.; Zeng, D.; Shuai, C.; Song, X. What drives the carbon emission in the Chinese cities?—A case of pilot low carbon city of Beijing. J. Clean. Prod. 2018, 174, 343–354. [Google Scholar] [CrossRef]
- Fang, G.; Wang, L.; Gao, Z.; Chen, J.; Tian, L. How to advance China’s carbon emission peak? A comparative analysis of energy transition in China and the USA. Environ. Sci. Pollut. Res. 2022, 29, 71487–71501. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, W. China’s energy transition pathway in a carbon neutral vision. Engineering 2022, 14, 64–76. [Google Scholar] [CrossRef]
- He, Y.; Xing, Y.; Zeng, X.; Ji, Y. Factors influencing carbon emissions from China’s electricity industry: Analysis using the combination of LMDI and K-means clustering. Environ. Impact Assess. Rev. 2022, 93, 106724. [Google Scholar] [CrossRef]
- Shuai, C.; Shen, L.; Jiao, L.; Wu, Y.; Tan, Y. Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Appl. Energy 2017, 187, 310–325. [Google Scholar] [CrossRef]
- Su, Y.X.; Chen, X.Z.; Li, Y.; Liao, J.; Ye, Y.; Zhang, H.; Huang, N.; Kuang, Y. China’s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines. Renew. Sustain. Energy Rev. 2014, 35, 231–243. [Google Scholar] [CrossRef]
- Hatzigeorgiou, E.; Polatidis, H.; Haralambopoulos, D. CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977–2007. Appl. Energy 2011, 88, 1377–1385. [Google Scholar] [CrossRef]
- Yang, J.; Cai, W.; Ma, M.; Li, L.; Liu, C.; Ma, X.; Li, L.; Chen, X. Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods. Sci. Total Environ. 2020, 711, 134569. [Google Scholar] [CrossRef]
- Yu, Y.; Kong, Q. Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method. Nat. Hazards 2017, 88, 1691–1707. [Google Scholar] [CrossRef]
- Song, M.; Guo, X.; Wu, K.; Wang, G. Driving effect analysis of energy-consumption carbon emissions in the Yangtze River Delta region. J. Clean. Prod. 2015, 103, 620–628. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Zheng, H.; Li, M.; Tan, T. How urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 260, 110061. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, T.; Xie, X.; Huang, Z. Regional low carbon development pathways for the Yangtze River Delta region in China. Energy Policy 2021, 151, 112172. [Google Scholar] [CrossRef]
- Resource and Environment Science and Data Center. Available online: https://www.resdc.cn (accessed on 1 September 2023).
- National Geographic Information Public Service Platform. Available online: https://www.tianditu.gov.cn (accessed on 1 September 2023).
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 1 September 2023).
- Lai, W.; Hu, Q.; Zhou, Q. Decomposition analysis of PM2.5 emissions based on LMDI and Tapio decoupling model: Study of Hunan and Guangdong. Environ. Sci. Pollut. Res. 2021, 28, 43443–43458. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wei, K.; Liu, J. Decoupling relationship between carbon emissions and economic development and prediction of carbon emissions in Henan Province: Based on Tapio method and STIRPAT model. Environ. Sci. Pollut. Res. 2023, 30, 52679–52691. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, M.; Zhou, M. Study on the decoupling relationship between CO2 emissions and economic development based on two-dimensional decoupling theory: A case between China and the United States. Ecol. Indic. 2019, 102, 230–236. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. The effects of urbanization and industrialization on decoupling economic growth from carbon emission—A case study of China. Sustain. Cities Soc. 2019, 51, 101758. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Su, B. Using a new two-dimensional decoupling model to evaluate the decoupling state of global energy footprint. Sustain. Cities Soc. 2020, 63, 102461. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Wang, Q. The impact of energy efficiency on carbon emissions: Evidence from the transportation sector in Chinese 30 provinces. Sustain. Cities Soc. 2022, 82, 103880. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Wan, X.; Jiang, T.; Li, S.; Nie, J. China’s carbon emissions structure and reduction potential on the supply-side and demand-side of energy: Under the background of four influencing factors. PLoS ONE 2021, 16, e0255387. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.Y.; Lin, B. Decoupling and mitigation potential analysis of CO2 emissions from Pakistan’s transport sector. Sci. Total Environ. 2020, 730, 139000. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Deng, K.; Dong, Z.; Meng, X.; Zhang, L.; Jiang, S.; Yang, L.; Xu, Y. Comprehensive assessment of land use carbon emissions of a coal resource-based city, China. J. Clean. Prod. 2022, 379, 134706. [Google Scholar] [CrossRef]
- Tisdell, C.A. Economic, social and political issues raised by the COVID-19 pandemic. Econ. Anal. Policy 2020, 68, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Ru, G.; Cao, X.; Yang, X.; Li, Y.; Jiang, D.; Li, F. The strategy of energy-related carbon emission reduction in Shanghai. Energy Policy 2010, 38, 633–638. [Google Scholar] [CrossRef]
- Kang, J.; Yang, Y. Energy carbon emission structure and reduction potential focused on the supply-side and demand-side. PLoS ONE 2020, 15, e0239634. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xue, Y.; Chang, M.; Xie, C. Macroeconomic determinants of high-tech migration in China: The case of Yangtze River Delta Urban Agglomeration. Cities 2020, 107, 102888. [Google Scholar] [CrossRef]
- Fu, X.; Cai, Q.; Yang, Y.; Xu, Y.; Zhao, F.; Yang, J.; Qiao, L.; Yao, L.; Li, W. Application of mobile monitoring to study characteristics of air pollution in typical areas of the Yangtze River Delta Eco-Green Integration Demonstration Zone, China. Sustainability 2023, 15, 205. [Google Scholar] [CrossRef]
- Yan, D.; Sun, W. Study on the evolution, driving factors, and regional comparison of innovation patterns in the Yangtze River Delta. Land 2022, 11, 876. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Oyebanji, M.O. Consumption-based carbon emissions, trade, and globalization: An empirical study of Bolivia. Environ. Sci. Pollut. Res. 2022, 20, 29. [Google Scholar] [CrossRef]
Classification | Status of Decoupling | Carbon Emission Change | Economic Growth | Elastic Coefficient |
---|---|---|---|---|
Negative decoupling | Expansive negative decoupling | >0 | >0 | e > 1.2 |
Strong negative decoupling | >0 | <0 | e < 0 | |
Weak negative decoupling | <0 | <0 | 0 < e < 0.8 | |
Decoupling | Weak decoupling | >0 | >0 | 0 < e < 0.8 |
Strong decoupling | <0 | >0 | e < 0 | |
Recessive decoupling | <0 | <0 | e > 1.2 | |
Coupling | Expansive coupling | >0 | >0 | 0.8 < e < 1.2 |
Recessive coupling | <0 | <0 | 0.8 < e < 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Gong, J.; Ni, X.; Zheng, Z.; Zhao, Q.; Hu, Y. The Dynamics of Energy-Related Carbon Emissions and Their Influencing Factors in the Yangtze River Delta, China. Energies 2024, 17, 2875. https://doi.org/10.3390/en17122875
Li X, Gong J, Ni X, Zheng Z, Zhao Q, Hu Y. The Dynamics of Energy-Related Carbon Emissions and Their Influencing Factors in the Yangtze River Delta, China. Energies. 2024; 17(12):2875. https://doi.org/10.3390/en17122875
Chicago/Turabian StyleLi, Xiang’er, Jiajun Gong, Xuan Ni, Zhiyi Zheng, Qingshan Zhao, and Yi’na Hu. 2024. "The Dynamics of Energy-Related Carbon Emissions and Their Influencing Factors in the Yangtze River Delta, China" Energies 17, no. 12: 2875. https://doi.org/10.3390/en17122875
APA StyleLi, X., Gong, J., Ni, X., Zheng, Z., Zhao, Q., & Hu, Y. (2024). The Dynamics of Energy-Related Carbon Emissions and Their Influencing Factors in the Yangtze River Delta, China. Energies, 17(12), 2875. https://doi.org/10.3390/en17122875