Navigating through the Storm—The Challenges of the Energy Transition in the European Union
Abstract
:1. Introduction
2. Literature Review
3. Data and Methods
4. Results and Discussions
- Greenhouse gas emissions have decreased and will continue to decrease as a result of the development of the consumption of renewable energy sources.
- The production of energy from renewable sources has increased at the level of the European Union as a result of the development of technologies for the production of wind, solar, and other energy.
- However, the need for the consumption of energy resources is insufficient, there are even periods of decrease.
- For the future, in line with the reduction in the production of non-renewable resources, it is necessary to undertake measures for each country aimed at developing the production of renewable energy sources.
- Both the comparative analysis and the one on main components highlighted the fact that there are discrepancies between the evolution of the indicators regarding the production and use of energy sources in the 27 member states of the European Union.
- Based on the statistical-mathematical model used, it follows that the production of renewable energy will be able to cover the final energy consumption at the level of the European Union in approximately 36 years.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volosevici, D. Corporations—Between Governance and Social Responsibility: The European Commission Approach. Econ. Insights Trends Chall. 2013, 2, 65. [Google Scholar]
- Milán-García, J.; Uribe-Toril, J.; Ruiz-Real, J.L.; de Pablo Valenciano, J. Sustainable local development: An overview of the state of knowledge. Resources 2019, 8, 31. [Google Scholar] [CrossRef]
- Sułkowski, Ł.; Dobrowolski, Z. The role of supreme audit institutions in energy accountability in EU countries. Energy Policy 2021, 156, 112413. [Google Scholar] [CrossRef]
- Koilo, V. Evidence of the Environmental Kuznets Curve: Unleashing the opportunity of industry 4.0 in emerging economies. J. Risk Financ. Manag. 2019, 12, 122. [Google Scholar] [CrossRef]
- Panait, M.; Voica, M.C.; Rădulescu, I. Approaches regarding environmental Kuznets curve in the European Union from the perspective of sustainable development. Appl. Ecol. Environ. Res. 2019, 17, 6801. [Google Scholar] [CrossRef]
- Režný, L.; Bureš, V. Energy transition scenarios and their economic impacts in the extended neoclassical model of economic growth. Sustainability 2019, 11, 3644. [Google Scholar] [CrossRef]
- Popescu, C.; Uță, D.S.; Mitu, A.C.; Anghel, D.A. Business Approaches in the Energy Sector—A Review. Econ. Insights Trends Chall. 2024, 13, 27–43. [Google Scholar] [CrossRef]
- Kádár, P. Pros and cons of the renewable energy application. Acta Polytech. Hung. 2014, 11, 211–224. [Google Scholar]
- Caetano, N.S.; Mata, T.M.; Martins, A.A.; Felgueiras, M.C. New trends in energy production and utilization. Energy Procedia 2017, 107, 7–14. [Google Scholar] [CrossRef]
- Zaharia, M.; Gogonea, R.M.; Tănăsescu, A. Characteristics of the evolution of renewable energy production in European Union. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 126, p. 04003. [Google Scholar]
- Bucur, C.; Tudorică, B.G.; Oprea, S.V.; Nancu, D.; Duşmănescu, D.M. Insights into energy indicators analytics towards European green energy transition using statistics and self-organizing maps. IEEE Access 2021, 9, 64427–64444. [Google Scholar] [CrossRef]
- Oprea, S.V.; Bâra, A.; Tudorică, B.G.; Călinoiu, M.I.; Botezatu, M.A. Insights into demand-side management with big data analytics in electricity consumers’ behaviour. Comput. Electr. Eng. 2021, 89, 106902. [Google Scholar] [CrossRef]
- Erokhin, V.; Tianming, G. Renewable energy as a promising venue for China-Russia collaboration. In Energy Transition: Economic, Social and Environmental Dimensions; Springer Nature: Singapore, 2022; pp. 73–101. [Google Scholar]
- Popescu, C.; Hysa, E.; Kruja, A.; Mansi, E. Social innovation, circularity and energy transition for environmental, social and governance (ESG) practices—A comprehensive review. Energies 2022, 15, 9028. [Google Scholar] [CrossRef]
- Driha, O.; Cascetta, F.; Nardini, S.; Bianco, V. Evolution of renewable energy generation in EU27. A decomposition analysis. Renew. Energy 2023, 207, 348–358. [Google Scholar] [CrossRef]
- Cristescu, T.; Stoica, M.E.; Suditu, S. Research on the Carbon Dioxide Emission Factor as a Result of Fuel Combustion. Rev. De Chim. 2019, 70, 585–590. [Google Scholar] [CrossRef]
- Morina, F.; Lyroudi, K.; Balomenou, C. The economic impact of the coronavirus pandemic (COVID-2019): Implications for the energy sector. In Energy Transition: Economic, Social and Environmental Dimensions; Springer Nature: Singapore, 2022; pp. 193–213. [Google Scholar]
- Dumitrache, L.N.; Suditu, S.; Ghețiu, I.; Pană, I.; Brănoiu, G.; Eparu, C. Using Numerical Reservoir Simulation to Assess CO2 Capture and Underground Storage, Case Study on a Romanian Power Plant and Its Surrounding Hydrocarbon Reservoirs. Processes 2023, 11, 805. [Google Scholar] [CrossRef]
- Beer, M.; Rybár, R. Development process of energy mix towards neutral carbon future of the Slovak Republic: A review. Processes 2021, 9, 1263. [Google Scholar] [CrossRef]
- Jianzhong, X.; Assenova, A.; Erokhin, V. Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan. Sustainability 2018, 10, 3315. [Google Scholar] [CrossRef]
- Graham, N.; Carroll, W.K.; Chen, D. Carbon Capital’s Political Reach: A Network Analysis of Federal Lobbying by the Fossil Fuel Industry from Harper to Trudeau. Can. Political Sci. Rev. 2020, 14, 1–31. [Google Scholar] [CrossRef]
- Żuk, P.; Pacześniak, A. Sustainable development, energy transition, and climate challenges in the context of gender: The framework of gender determinants of environmental orientation in Poland. Sustainability 2020, 12, 9214. [Google Scholar] [CrossRef]
- Roy, B.; Schaffartzik, A. Talk renewables, walk coal: The paradox of India’s energy transition. Ecol. Econ. 2021, 180, 106871. [Google Scholar] [CrossRef]
- Salimi, M.; Amidpour, M. The impact of energy transition on the geopolitical importance of oil-exporting countries. World 2022, 3, 607–618. [Google Scholar] [CrossRef]
- Hu, G.; Yang, J.; Li, J. The Dynamic Evolution of Global Energy Security and Geopolitical Games: 1995~2019. Int. J. Environ. Res. Public Health 2022, 19, 14584. [Google Scholar] [CrossRef]
- Wiertz, T.; Kuhn, L.; Mattissek, A. A turn to geopolitics: Shifts in the German energy transition discourse in light of Russia’s war against Ukraine. Energy Res. Soc. Sci. 2023, 98, 103036. [Google Scholar] [CrossRef]
- Andersen, A.D.; Markard, J.; Bauknecht, D.; Korpås, M. Architectural change in accelerating transitions: Actor preferences, system architectures, and flexibility technologies in the German energy transition. Energy Res. Soc. Sci. 2023, 97, 102945. [Google Scholar] [CrossRef]
- Siddi, M. The Geopolitics of Energy Transition: New Resources and Technologies. The Implications of Emerging Technologies in the Euro-Atlantic Space: Views from the Younger Generation Leaders Network; Springer: Berlin/Heidelberg, Germany, 2023; pp. 73–85. [Google Scholar]
- Ceglia, F.; Marrasso, E.; Samanta, S.; Sasso, M. Addressing energy poverty in the energy community: Assessment of energy, environmental, economic, and social benefits for an Italian residential case study. Sustainability 2022, 14, 15077. [Google Scholar] [CrossRef]
- Neacsa, A.; Panait, M.; Muresan, J.D.; Voica, M.C. Energy poverty in European Union: Assessment difficulties, effects on the quality of life, mitigation measures. some evidences from Romania. Sustainability 2020, 12, 4036. [Google Scholar] [CrossRef]
- Dobrowolski, Z. Energy and local safety: How the administration limits energy security. Energies 2021, 14, 4841. [Google Scholar] [CrossRef]
- Hoicka, C.E.; Lowitzsch, J.; Brisbois, M.C.; Kumar, A.; Camargo, L.R. Implementing a just renewable energy transition: Policy advice for transposing the new European rules for renewable energy communities. Energy Policy 2021, 156, 112435. [Google Scholar] [CrossRef]
- Popescu, C.; Apostu, S.A.; Rădulescu, I.G.; Mureșan, J.D.; Brezoi, A.G. Energizing the Now: Navigating the Critical Landscape of Today’s Energy Challenges—An In-Depth Review. Energies 2024, 17, 675. [Google Scholar] [CrossRef]
- Siksnelyte-Butkiene, I. A systematic literature review of indices for energy poverty assessment: A household perspective. Sustainability 2021, 13, 10900. [Google Scholar] [CrossRef]
- Yasmeen, R.; Huang, H.; Shah, W.U.H. Assessing the significance of FinTech and mineral resource depletion in combating energy poverty: Empirical insights from BRICS economies. Resour. Policy 2024, 89, 104691. [Google Scholar] [CrossRef]
- Pop, C.A.; Cioara, T.; Antal, M.; Mihailescu, V.; Mitrea, D.; Anghel, I.; Salomie, I.; Raveduto, G.; Bertoncini, M.; Croce, V.; et al. Blockchain based decentralized local energy flexibility market. Energy Rep. 2021, 7, 5269–5288. [Google Scholar]
- Lindholm, O.; Rehman, H.U.; Reda, F. Positioning positive energy districts in European cities. Buildings 2021, 11, 19. [Google Scholar] [CrossRef]
- Gabriela, R.I.; Catalin, P. Renewable Energy Strategies: Where European Union Headed. Ann. Econ. Ser. 2015, 102–107. [Google Scholar]
- Christensen, A. Transportation Carbon Intensity Targets for the European Union–Road and Aviation Sectors. 2021. Available online: https://theicct.org/publication/transportation-carbon-intensity-targets-for-the-european-union-road-and-aviation-sectors/ (accessed on 9 January 2024).
- Doğan, B.; Driha, O.M.; Balsalobre Lorente, D.; Shahzad, U. The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries. Sustain. Dev. 2021, 29, 1–12. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Driha, O.M.; Tiwari, A.K. Renewable Energy Trade. In Renewable Energy: Analysis, Resources, Applications, Management, and Policy; AIP Publishing LLC.: Melville, Australia; New York, NY, USA, 2022; pp. 3-1–3-20. [Google Scholar] [CrossRef]
- Brożyna, J.; Mentel, G.; Szetela, B. Renevable energy and economic development in the European Union. Acta Polytech. Hung. 2017, 14, 11–34. [Google Scholar]
- Kulkarni, S.S.; Wang, L.; Venetsanos, D. Managing Technology Transfer Challenges in the Renewable Energy Sector within the European Union. Wind 2022, 2, 150–174. [Google Scholar] [CrossRef]
- Fernández-González, R.; Arce, E.; Garza-Gil, D. How political decisions affect the economy of a sector: The example of photovoltaic energy in Spain. Energy Rep. 2021, 7, 2940–2949. [Google Scholar] [CrossRef]
- Çomuk, P.; Akkaya, B.; Ercoşkun, S.; Apostu, S.A. The foreıgn dırect ınvestments, economıc growth, renewable energy and carbon (CO2) emıssıons nexus: An empırıcal analysıs for Turkey and European Unıon Countrıes. Environ. Dev. Sustain. 2023, 1–17. [Google Scholar] [CrossRef]
- Neacsa, A.; Muresan, J.D.; Voica, M.C.; Manta, O.; Ivan, M.V. Oil Price—A Sensor for the Performance of Romanian Oil Manufacturing Companies. Energies 2023, 16, 2336. [Google Scholar] [CrossRef]
- Petrescu, M.G.; Ilincă, C.; Tănase, M. Reliability of manufacturing technologies. In Innovation and Sustainable Manufacturing; Woodhead Publishing: Cambridge, UK, 2023; pp. 29–65. [Google Scholar]
- Petrescu, M.G.; Neacșa, A.; Laudacescu, E.; Tănase, M. Energy in the Era of Industry 5.0—Opportunities and Risks. In Industry 5.0: Creative and Innovative Organizations; Springer International Publishing: Cham, Switzerland, 2023; pp. 71–90. [Google Scholar]
- González-Sánchez, M.; Martín-Ortega, J.L. Greenhouse gas emissions growth in Europe: A comparative analysis of determinants. Sustainability 2020, 12, 1012. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Zia-Ul-Haq, H.M.; Ponce, P.; Janjua, L. Re-investigating the impact of non-renewable and renewable energy on environmental quality: A roadmap towards sustainable development. Resour. Policy 2023, 81, 103411. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Panait, M.; Guillen, F.P.; Raimi, L. (Eds.) Energy Transition: Economic, Social and Environmental Dimensions; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Renna, P.; Materi, S. A literature review of energy efficiency and sustainability in manufacturing systems. Appl. Sci. 2021, 11, 7366. [Google Scholar] [CrossRef]
- Pereira, F.; Caetano, N.S.; Felgueiras, C. Increasing energy efficiency with a smart farm—An economic evaluation. Energy Rep. 2022, 8, 454–461. [Google Scholar] [CrossRef]
- Zaharia, M.; Pătrașcu, A.; Gogonea, M.R.; Tănăsescu, A.; Popescu, C. A cluster design on the influence of energy taxation in shaping the new EU-28 economic paradigm. Energies 2017, 10, 257. [Google Scholar] [CrossRef]
- European Union. Renewable Energy Directive EU/2018/2001; European Union: Brussels, Belgium, 2001. [Google Scholar]
- European Union. Revised Renewable Energy Directive EU/2023/2413; European Union: Brussels, Belgium, 2023. [Google Scholar]
- EEA. Available online: https://www.eea.europa.eu/en/topics/in-depth/climate-change-mitigation-reducing-emissions (accessed on 9 January 2024).
- Long, N.; Steinberger, K. Renewable Energy Is Key to Fighting Climate Change. Nat. Resour. Def. Council 2016. Available online: https://www.nrdc.org/bio/noah-long/renewable-energy-key-fighting-climate-change (accessed on 20 April 2024).
- Chan, H.W.; Udall, A.M.; Tam, K.P. Effects of perceived social norms on support for renewable energy transition: Moderation by national culture and environmental risks. J. Environ. Psychol. 2022, 79, 101750. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Schmid, P.; Stirling, A.; Walter, G.; MacKerron, G. Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power. Nat. Energy 2020, 5, 928–935. [Google Scholar] [CrossRef]
- Morina, F.; Balomenou, C.; Ergün, U. Determinants of Profitability: Evidence of Renewable Energy Companies. In Global, Regional and Local Perspectives on the Economies of Southeastern Europe: Proceedings of the 11th International Conference on the Economies of the Balkan and Eastern European Countries (EBEEC), Bucharest, Romania, 10–12 May 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 243–256. [Google Scholar]
- Gigauri, I.; Vasilev, V. Corporate social responsibility in the energy sector: Towards sustainability. In Energy Transition: Economic, Social and Environmental Dimensions; Springer Nature: Singapore, 2022; pp. 267–288. [Google Scholar]
- Ishaq, M.; Ghouse, G.; Fernandez-Gonzalez, R.; Puime-Guillen, F.; Tandir, N.; Santos de Oliveira, H.M. From Fossil Energy to Renewable Energy: Why is Circular Economy Needed in the Energy Transition? Front. Environ. Sci. 2022, 10, 941791. [Google Scholar] [CrossRef]
- Postea, M.M.; Achim, M.V.; Noja, G.G. New estimate of shadow economy based on the total energy consumption. Evidence from the European Union countries. Energy Econ. 2024, 130, 107335. [Google Scholar]
- Sajid, M.J.; Zhang, Y.; Janjua, L.R. Breaking barriers: Assessing technology transfer for climate-resilient development. Environ. Technol. Innov. 2024, 33, 103471. [Google Scholar] [CrossRef]
- Cantarero, M.M.V. Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Res. Soc. Sci. 2020, 70, 101716. [Google Scholar] [CrossRef]
- Swilling, M.; Nygaard, I.; Kruger, W.; Wlokas, H.; Jhetam, T.; Davies, M.; Jacob, M.; Morris, M.; Robbins, G.; Funder, M. Linking the energy transition and economic development: A framework for analysis of energy transitions in the global South. Energy Res. Soc. Sci. 2022, 90, 102567. [Google Scholar] [CrossRef]
- Heras, A.; Gupta, J. Fossil fuels, stranded assets, and the energy transition in the Global South: A systematic literature review. Wiley Interdiscip. Rev. Clim. Change 2023, 15, e866. [Google Scholar] [CrossRef]
- Apergi, M.; Eicke, L.; Goldthau, A.; Hashem, M.; Huneeus, S.; de Oliveira, R.L.; Otieno, M.; Schuch, E.; Veit, K. An energy justice index for the energy transition in the global South. Renew. Sustain. Energy Rev. 2024, 192, 114238. [Google Scholar] [CrossRef]
- Imteyaz, B.; Lawal, D.U.; Tahir, F.; Rehman, S. Prospects of large-scale photovoltaic-based power plants in the Kingdom of Saudi Arabia. Eng. Rep. 2021, 3, e12398. [Google Scholar] [CrossRef]
- Qadir, S.A.; Al-Motairi, H.; Tahir, F.; Al-Fagih, L. Incentives and strategies for financing the renewable energy transition: A review. Energy Rep. 2021, 7, 3590–3606. [Google Scholar] [CrossRef]
- Alasseri, R.; Rao, T.J.; Sreekanth, K.J. Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market. Renew. Sustain. Energy Rev. 2020, 117, 109490. [Google Scholar] [CrossRef]
- Pitelis, A.; Vasilakos, N.; Chalvatzis, K. Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness. Renew. Energy 2020, 151, 1163–1172. [Google Scholar] [CrossRef]
- Ellabban, O.; Refaat, S.S.; Abu-Rub, H.; Al-Fagih, L. A novel methodology to determine the maximum PV penetration in distribution networks. In Proceedings of the 2019 2nd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 19–21 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Yoo, T.H.; Ko, W.; Rhee, C.H.; Park, J.K. The incentive announcement effect of demand response on market power mitigation in the electricity market. Renew. Sustain. Energy Rev. 2017, 76, 545–554. [Google Scholar] [CrossRef]
- Solomon, B.D.; Krishna, K. The coming sustainable energy transition: History, strategies, and outlook. Energy Policy 2011, 39, 7422–7431. [Google Scholar] [CrossRef]
- Gallo, A.B.; Simões-Moreira, J.R.; Costa, H.K.M.; Santos, M.M.; Dos Santos, E.M. Energy storage in the energy transition context: A technology review. Renew. Sustain. Energy Rev. 2016, 65, 800–822. [Google Scholar] [CrossRef]
- Chen, B.; Xiong, R.; Li, H.; Sun, Q.; Yang, J. Pathways for sustainable energy transition. J. Clean. Prod. 2019, 228, 1564–1571. [Google Scholar] [CrossRef]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; De Souza Noel Simas Barbosa, L.; et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Blazquez, J.; Fuentes, R.; Manzano, B. On some economic principles of the energy transition. Energy Policy 2020, 147, 111807. [Google Scholar] [CrossRef]
- Limpens, G.; Moret, S.; Jeanmart, H.; Maréchal, F. EnergyScope TD: A novel open-source model for regional energy systems. Appl. Energy 2019, 255, 113729. [Google Scholar] [CrossRef]
- USA Energy Department. Available online: https://www.energy.gov/articles/cop28-countries-launch-declaration-triple-nuclear-energy-capacity-2050-recognizing-key (accessed on 9 January 2024).
- International Energy Agency. The Role of Critical Minerals in Clean Energy Transitions; World Energy Outlook Special Report; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Farzaneh, H.; Malehmirchegini, L.; Bejan, A.; Afolabi, T.; Mulumba, A.; Daka, P.P. Artificial intelligence evolution in smart buildings for energy efficiency. Appl. Sci. 2021, 11, 763. [Google Scholar] [CrossRef]
- Višković, A.; Franki, V.; Jevtić, D. Artificial intelligence as a facilitator of the energy transition. In Proceedings of the 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 23–27 May 2022; pp. 494–499. [Google Scholar]
- Iglesias-Sanfeliz Cubero, Í.M.; Meana-Fernández, A.; Ríos-Fernández, J.C.; Ackermann, T.; Gutiérrez-Trashorras, A.J. Analysis of Neural Networks Used by Artificial Intelligence in the Energy Transition with Renewable Energies. Appl. Sci. 2023, 14, 389. [Google Scholar] [CrossRef]
- Dudnik, O.; Vasiljeva, M.; Kuznetsov, N.; Podzorova, M.; Nikolaeva, I.; Vatutina, L.; Khomenko, E.; Ivleva, M. Trends, impacts, and prospects for implementing artificial intelligence technologies in the energy industry: The implication of open innovation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 155. [Google Scholar] [CrossRef]
Year | FEC Millions of Tons | RE Millions of Tons | GES Index (Year 2000 = 100) | GAE Millions of Tons | IMP (%) |
---|---|---|---|---|---|
2000 | 979.9 | 83.43 | 100 | 1297.94 | 56.284 |
2001 | 1002.9 | 87.20 | 99.4 | 1303.78 | 55.769 |
2002 | 996.2 | 91.13 | 99.2 | 1309.64 | 56.256 |
2003 | 1026.2 | 95.25 | 98.9 | 1315.53 | 56.878 |
2004 | 1036.3 | 99.55 | 97.4 | 1321.45 | 56.854 |
2005 | 1041.3 | 105.96 | 96.5 | 1358.93 | 57.819 |
2006 | 1045.9 | 112.72 | 95.7 | 1403.21 | 58.257 |
2007 | 1028.5 | 120.85 | 95.8 | 1428.88 | 57.219 |
2008 | 1036.7 | 130.11 | 94.3 | 1461.58 | 58.37 |
2009 | 980.8 | 135.81 | 93.3 | 1370.26 | 57.175 |
2010 | 1024.5 | 147.51 | 92 | 1445.20 | 55.766 |
2011 | 984.6 | 143.22 | 91.7 | 1421.61 | 56.359 |
2012 | 982.6 | 157.22 | 91.2 | 1537.23 | 54.918 |
2013 | 980.4 | 163.35 | 89.8 | 1519.99 | 53.939 |
2014 | 938.8 | 163.58 | 88.4 | 1468.05 | 54.421 |
2015 | 957.9 | 170.81 | 88.9 | 1488.48 | 56.064 |
2016 | 976.9 | 175.75 | 88.1 | 1501.71 | 56.16 |
2017 | 989 | 182.21 | 86.7 | 1532.99 | 57.548 |
2018 | 991.6 | 189.49 | 85.1 | 1524.75 | 58.136 |
2019 | 986 | 196.17 | 82.2 | 1501.40 | 60.482 |
2020 | 905.9 | 200.30 | 80.9 | 1379.10 | 57.455 |
2021 | 967.9 | 204.61 | 81.2 | 1462.43 | 55.523 |
Country | FEC Millions of Tons | RE Millions of Tons | GES Index (Year 2000 = 100) | GAE Millions of Tons | IMP Millions of Tons |
---|---|---|---|---|---|
Belgium | 35.9 | 4.67 | 80.9 | 64.37 | 45.58 |
Bulgaria | 10.3 | 1.75 | 95.1 | 19.38 | 7.00 |
Czechia | 26.2 | 4.63 | 69.2 | 42.77 | 17.11 |
Denmark | 13.8 | 4.79 | 60.9 | 17.49 | 5.64 |
Germany | 209.7 | 40.20 | 85.2 | 297.29 | 188.76 |
Estonia | 2.8 | 1.06 | 71.1 | 4.91 | 0.07 |
Ireland | 11.4 | 1.43 | 82.7 | 14.47 | 11.14 |
Greece | 15.2 | 3.33 | 71.7 | 23.32 | 17.22 |
Spain | 80.3 | 16.65 | 78.1 | 125.93 | 87.01 |
France | 143.2 | 27.70 | 79.7 | 242.90 | 107.30 |
Croatia | 7 | 2.19 | 86.8 | 8.72 | 4.75 |
Italy | 113.3 | 21.57 | 82.1 | 156.18 | 114.85 |
Cyprus | 1.7 | 0.31 | 97.7 | 2.66 | 2.38 |
Latvia | 4.1 | 1.73 | 79.8 | 4.79 | 1.84 |
Lithuania | 5.7 | 1.61 | 103.7 | 8.14 | 5.96 |
Luxembourg | 4.1 | 0.48 | 86 | 4.23 | 3.91 |
Hungary | 19.2 | 2.71 | 75 | 27.38 | 14.82 |
Malta | 0.6 | 0.07 | 65.7 | 2.74 | 2.66 |
The Netherlands | 46.9 | 6.10 | 86 | 85.77 | 50.07 |
Austria | 27.8 | 10.13 | 80.8 | 34.14 | 17.74 |
Poland | 75.2 | 11.75 | 84.4 | 109.94 | 44.46 |
Portugal | 15.7 | 5.34 | 72.7 | 22.20 | 14.86 |
Romania | 25.4 | 5.99 | 83.8 | 34.33 | 10.86 |
Slovenia | 4.7 | 1.18 | 86 | 6.63 | 3.22 |
Slovakia | 11.4 | 1.98 | 75.5 | 17.79 | 9.36 |
Finland | 24.9 | 10.73 | 62.1 | 34.00 | 12.91 |
Sweden | 31.7 | 19.84 | 67.7 | 49.95 | 10.49 |
Component | ||
---|---|---|
1 | 2 | |
FEC | 0.997 | 0.008 |
RE | 0.959 | −0.133 |
GES | 0.061 | 0.997 |
IMP | 0.980 | 0.051 |
GAE | 0.992 | 0.009 |
Cluster | Error | F | Sig | |||
---|---|---|---|---|---|---|
Mean Square | df | Mean Square | df | |||
FEC | 48,228.712 | 1 | 609.655 | 25 | 79.108 | 0.000 |
RE | 1640.713 | 1 | 32.438 | 25 | 50.581 | 0.000 |
IMP | 38,566.046 | 1 | 544.528 | 25 | 70.825 | 0.000 |
GES | 24.402 | 1 | 108.457 | 25 | 0.225 | 0.639 |
GAE | 106,885.001 | 1 | 1448.314 | 25 | 73.800 | 0.000 |
Source | U.M. | Indicator | Period | Volume | |
---|---|---|---|---|---|
1 | Energy | MWh | consumption | daily | 339,233,647.00 |
2 | Unregenerable | MWh | consumption | daily | 288,774,836.00 |
3 | Regenerable | MWh | consumption | daily | 51,085,629.00 |
5 | Petrol | barrel | consumption | daily | 69,576,746.00 |
6 | Petrol | barrel | available reserves | until depletion | 1,389,862,761,737.00 |
7 | Petrol | day | days to depletion | until depletion | 14,494.00 |
8 | Natural Gas | Bep | available reserves | until depletion | 1,072,354,281,714.00 |
9 | Natural Gas | day | days to depletion | until depletion | 56,440.00 |
10 | Coal | Bep | available reserves | until depletion | 4,280,613,812,072.00 |
11 | Coal | day | days to depletion | until depletion | 147,607.00 |
Indicator | Value |
---|---|
= Final consumption value in 2021 | 967.90 |
= Renewable energy value in 2021 | 204.61 |
= Annual average index of change in final consumption | 0.9999 |
= Annual average index of change in renewable energy | 1.0440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panait, M.; Iacob, Ș.; Voica, C.; Iacovoiu, V.; Iov, D.; Mincă, C.; Teodorescu, C. Navigating through the Storm—The Challenges of the Energy Transition in the European Union. Energies 2024, 17, 2874. https://doi.org/10.3390/en17122874
Panait M, Iacob Ș, Voica C, Iacovoiu V, Iov D, Mincă C, Teodorescu C. Navigating through the Storm—The Challenges of the Energy Transition in the European Union. Energies. 2024; 17(12):2874. https://doi.org/10.3390/en17122874
Chicago/Turabian StylePanait, Mirela, Ștefan Iacob, Cătălin Voica, Viorela Iacovoiu, Daniela Iov, Carmen Mincă, and Cristian Teodorescu. 2024. "Navigating through the Storm—The Challenges of the Energy Transition in the European Union" Energies 17, no. 12: 2874. https://doi.org/10.3390/en17122874
APA StylePanait, M., Iacob, Ș., Voica, C., Iacovoiu, V., Iov, D., Mincă, C., & Teodorescu, C. (2024). Navigating through the Storm—The Challenges of the Energy Transition in the European Union. Energies, 17(12), 2874. https://doi.org/10.3390/en17122874