Economic Feasibility Comparison between Building-Integrated Photovoltaics and Green Systems in Northeast Texas
Abstract
:1. Introduction
2. Data Collection
3. Building-Integrated Photovoltaics on a Rooftop
3.1. Electricity Generation Modeling
3.2. Levelized Cost of Energy
4. Economic Feasibility Comparison
4.1. Economic Feasibility of a Green Roof System
4.2. Economic Feasibility of a Building-Integrated Photovoltaics System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.; Kim, S.; Yoon, C.Y. An efficient structure of an agrophotovoltaic system in a temperate climate region. Agronomy 2021, 11, 1584. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Recent advancement in BIPV product technologies: A review. Energy Build. 2017, 140, 188–195. [Google Scholar] [CrossRef]
- Enkvist, P.A.; Dinkel, J.; Lin, C. Impact of the financial crisis on carbon economics: Version 2.1 of the global greenhouse gas abatement cost curve. McKinsey Co. 2010, 374, 3–12. [Google Scholar]
- Yang, T.; Athienitis, A.K. A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems. Renew. Sustain. Energy Rev. 2016, 66, 886–912. [Google Scholar] [CrossRef]
- Yu, G.; Yang, H.; Luo, D.; Cheng, X.; Ansah, M.K. A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds. Renew. Sustain. Energy Rev. 2021, 149, 111355. [Google Scholar] [CrossRef]
- Debbarma, M.; Sudhakar, K.; Baredar, P. Comparison of BIPV and BIPVT: A review. Resour. Effic. Technol. 2017, 3, 263–271. [Google Scholar] [CrossRef]
- Anderson, T.N.; Duke, M.; Morrison, G.L.; Carson, J.K. Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector. Sol. Energy 2009, 83, 445–455. [Google Scholar] [CrossRef] [Green Version]
- International Standard Organization. Net Zero Guidelines. 2022. Available online: https://www.iso.org/netzero (accessed on 2 April 2023).
- Grand View Research. Building Integrated Photovoltaics Market Size Report, 2030. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/building-integrated-photovoltaics-bipv-market (accessed on 2 April 2023).
- Peng, C.; Huang, Y.; Wu, Z. Building-integrated photovoltaics (BIPV) in architectural design in China. Energy Build. 2011, 43, 3592–3598. [Google Scholar] [CrossRef]
- Gholami, H.; Røstvik, H.N. Economic analysis of BIPV systems as a building envelope material for building skins in Europe. Energy 2020, 204, 117931. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Yuan, X.; Liu, Y.; Xu, J.; Zhang, S.; He, B.J. A comprehensive study of feasibility and applicability of building integrated photovoltaic (BIPV) systems in regions with high solar irradiance. J. Clean. Prod. 2021, 307, 127240. [Google Scholar] [CrossRef]
- Sun, H.; Heng, C.K.; Tay, S.E.R.; Chen, T.; Reindl, T. Comprehensive feasibility assessment of building integrated photovoltaics (BIPV) on building surfaces in high-density urban environments. Sol. Energy 2021, 225, 734–746. [Google Scholar] [CrossRef]
- Kamel, R.S.; Fung, A.S. Modeling, simulation and feasibility analysis of residential BIPV/T+ ASHP system in cold climate—Canada. Energy Build. 2014, 82, 758–770. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S. Optimization of the design of an agrophotovoltaic system in future climate conditions in South Korea. Renew. Energy 2023, 206, 928–938. [Google Scholar] [CrossRef]
- Park, G.; Hawkins, T.W. An Examination of the Effect of Building Compactness and Green Roofs on Indoor Temperature through the Use of Physical Models. Geogr. Bull. 2015, 56, 93–101. [Google Scholar]
- Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
- Szlivka, D.F.; Rajnai, Z. Examination of Temperature Change of Green Roof and Flat Roof in Frequency Range. Ann. Fac. Eng. Hunedoara 2016, 14, 221. [Google Scholar]
- Dimitrijevic, D.; Tomic, M.; Zivkovic, P.; Stojiljkovic, M.; Dobrnjac, M. Thermal characteristics and potential for retrofit by using green vegetated roofs. Ann. Fac. Eng. Hunedoara 2016, 14, 41. [Google Scholar]
- Schade, J.; Lidelöw, S.; Lönnqvist, J. The thermal performance of a green roof on a highly insulated building in a sub-arctic climate. Energy Build. 2021, 241, 110961. [Google Scholar] [CrossRef]
- He, Y.; Lin, E.S.; Tan, C.L.; Tan, P.Y.; Wong, N.H. Quantitative evaluation of plant evapotranspiration effect for green roof in tropical area: A case study in Singapore. Energy Build. 2021, 241, 110973. [Google Scholar] [CrossRef]
- GlobeNewswire, Inc. Contrive Datum Insights. 2023. Available online: https://www.globenewswire.com/en/search/organization/Contrive%2520Datum%2520Insights%2520Pvt%2520Ltd (accessed on 2 April 2023).
- Cavanaugh, L.M. Redefining the green roof. J. Archit. Eng. 2008, 14, 4–6. [Google Scholar] [CrossRef]
- Ellingwood, B.R.; Culver, C.G. Analysis of live loads in office buildings. J. Struct. Div. 1977, 103, 1551–1560. [Google Scholar] [CrossRef]
- Liu, K.; Minor, J. Performance evaluation of an extensive green roof. In Proceedings of the Green Rooftops for Sustainable Communities, Washington, DC, USA, 4–6 May 2005; pp. 1–11. [Google Scholar]
- Kim, S.; Kim, S. Performance estimation modeling via machine learning of an agrophotovoltaic system in South Korea. Energies 2021, 14, 6724. [Google Scholar] [CrossRef]
- Texas A&M University-Commerce; Keith, D. McFarland Science Building. Available online: https://www.tamuc.edu/map/ (accessed on 24 March 2023).
- Aydin, B.; Kim, S.; Harp, D. Designing an Automated Sustainable Green Roof System. In Proceedings of the IISE Annual Conference, Orlando, FL, USA, 19–22 May 2018; Institute of Electrical and Electronics Engineers (IISE): Piscataway, NJ, USA, 2018. [Google Scholar]
- National Oceanic and Atmospheric Administration. National Weather Service. Available online: https://forecast.weather.gov (accessed on 24 March 2023).
- Britannica. Köppen Climate Classification. Available online: https://www.britannica.com/science/Koppen-climate-classification (accessed on 24 March 2023).
- Kim, S.; Aydin, B.; Kim, S. Simulation modeling of a photovoltaic-green roof system for energy cost reduction of a building: Texas case study. Energies 2021, 14, 5443. [Google Scholar] [CrossRef]
- Solar Energy Local. Solar Energy in Dallas. Available online: https://www.solarenergylocal.com/states/texas/dallas/#ref (accessed on 28 March 2023).
- US Energy Information Administration. Electricity. Available online: https://www.eia.gov/electricity/data/state/ (accessed on 28 March 2023).
- Kim, S.; Kim, S.; Green, C.H.; Jeong, J. Multivariate polynomial regression modeling of total dissolved-solids in rangeland stormwater runoff in the Colorado River Basin. Environ. Model. Softw. 2022, 157, 105523. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.; On, Y.; So, J.; Yoon, C.Y.; Kim, S. Hybrid Performance Modeling of an Agrophotovoltaic System in South Korea. Energies 2022, 15, 6512. [Google Scholar] [CrossRef]
- Darling, S.B.; You, F.; Veselka, T.; Velosa, A. Assumptions and the levelized cost of energy for photovoltaics. Energy Environ. Sci. 2011, 4, 3133–3139. [Google Scholar] [CrossRef]
- Branker, K.; Pathak, M.J.M.; Pearce, J.M. A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 2011, 15, 4470–4482. [Google Scholar] [CrossRef] [Green Version]
- Short, W.; Packey, D.J.; Holt, T. A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies; (No. NREL/TP-462-5173); National Renewable Energy Lab. (NREL): Golden, CO, USA, 1995.
- TXU Energy. Solar Saver. 2023. Available online: https://shop.txu.com/solar-saver/ (accessed on 28 March 2023).
- City of Commerce. Utility Services. 2023. Available online: https://commercetx.org/departments/department-of-finance/152-2/ (accessed on 29 March 2023).
- Access Energy Cooperative. The Energy Cost of Irrigation. 2023. Available online: https://www.accessenergycoop.com/ (accessed on 29 March 2023).
- HomeAdvisor. Green Roof Cost. 2023. Available online: https://www.homeadvisor.com/cost/roofing/green-roof/#avg (accessed on 28 March 2023).
- Texas A&M AgriLife. Urban Landscape Water Use in Texas. 2023. Available online: https://twri.tamu.edu/media/2526/em-116_urbanlandscapewateruse.pdf (accessed on 28 March 2023).
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Al-Aboosi, F.Y.; Al-Aboosi, A.F. Preliminary Evaluation of a Rooftop Grid-Connected Photovoltaic System Installation under the Climatic Conditions of Texas (USA). Energies 2021, 14, 586. [Google Scholar] [CrossRef]
- Mondol, J.D.; Yohanis, Y.; Smyth, M.; Norton, B. Long term performance analysis of a grid connected photovoltaic system in Northern Ireland. Energy Convers. Manag. 2006, 47, 2925–2947. [Google Scholar] [CrossRef]
- Ayompe, L.; Duffy, A.H.B.; McCormack, S.; Conlon, M. Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy Convers. Manag. 2011, 52, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Vasisht, M.S.; Srinivasan, J.; Ramasesha, S.K. Performance of solar photovoltaic installations: Effect of seasonal variations. Sol. Energy 2016, 131, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Asif, M. Urban Scale Application of Solar PV to Improve Sustainability in the Building and the Energy Sectors of KSA. Sustainability 2016, 8, 1127. [Google Scholar] [CrossRef] [Green Version]
- Wittkopf, S.K.; Valliappan, S.; Liu, L.; Ang, K.S.; Cheng, S.C.J. Analytical performance monitoring of a 142.5 kWp grid-connected rooftop BIPV system in Singapore. Renew. Energy 2012, 47, 9–20. [Google Scholar] [CrossRef]
- Drif, M.; Pérez, P.J.; Aguilera, J.; Almonacid, G.; Gomez, P.; de la Casa, J.; Aguilar, J.D. Univer Project. A grid connected photovoltaic system of 200kWp at Jaén University. Overview and performance analysis. Sol. Energy Mater. Sol. Cells 2007, 91, 670–683. [Google Scholar] [CrossRef]
- Ibrik, I.H.; Cruz, S. Techno-economic assessment of on-grid solar PV system in Palestine. Cogent Eng. 2020, 7, 1727131. [Google Scholar] [CrossRef]
- Sharma, R.; Goel, S. Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India. Energy Rep. 2017, 3, 76–84. [Google Scholar] [CrossRef]
- Kumar, S.S. Performance-economic and energy loss analysis of 80 KWp grid connected roof top transformer less photovoltaic power plant. Circuits Syst. 2016, 7, 662–679. [Google Scholar] [CrossRef] [Green Version]
- Attari, K.; Elyaakoubi, A.; Asselman, A. Performance analysis and investigation of a grid-connected photovoltaic installation in Morocco. Energy Rep. 2016, 2, 261–266. [Google Scholar] [CrossRef] [Green Version]
- My Sun. What Would Be the Annual Maintenance Cost for a Solar PV System? 2023. Available online: https://www.itsmysun.com/solar-calculator/ (accessed on 3 April 2023).
- APEC Economic and Life Cycle Analysis of Photovoltaic System in APEC Region. 2019. Available online: https://www.apec.org/Publications/2019/04/Life-Cycle-Assessment-of-Photovoltaic-Systems-in-the-APEC-Region (accessed on 3 April 2023).
- Jones-Albertus, R.; Feldman, D.; Fu, R.; Horowitz, K.; Woodhouse, M. Technology advances needed for photovoltaics to achieve widespread grid price parity. Prog. Photovolt. Res. Appl. 2016, 24, 1272–1283. [Google Scholar] [CrossRef]
- Fu, R.; Feldman, D.J.; Margolis, R.M. US Solar Photovoltaic System Cost Benchmark: Q1 2018; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018.
- Wang, J.W.; Poh, C.H.; Tan, C.Y.T.; Lee, V.N.; Jain, A.; Webb, E.L. Building biodiversity: Drivers of bird and butterfly diversity on tropical urban roof gardens. Ecosphere 2017, 8, e01905. [Google Scholar] [CrossRef]
Month | Max. Temperature (°C) | Avg. Temperature (°C) | Min. Temperature (°C) | Precipitation (mm) | Wind (m/s) |
---|---|---|---|---|---|
January | 20.32 | 11.02 | −4.44 | 2.03 | 4.11 |
February | 23.72 | 16.07 | 7.92 | 2.03 | 4.81 |
March | 24.60 | 18.42 | 9.17 | 0.51 | 5.18 |
April | 25.18 | 20.78 | 14.65 | 2.54 | 5.44 |
May | 29.38 | 24.04 | 18.08 | 1.02 | 5.04 |
June | 31.23 | 27.37 | 21.91 | 4.57 | 4.73 |
July | 33.38 | 30.26 | 24.34 | 1.78 | 3.99 |
August | 32.04 | 28.61 | 24.59 | 5.08 | 3.78 |
September | 30.69 | 26.81 | 20.99 | 0.51 | 3.91 |
October | 28.02 | 20.98 | 7.99 | 1.78 | 4.16 |
November | 26.27 | 16.37 | 8.56 | 0.76 | 3.80 |
December | 21.70 | 9.07 | −5.00 | 3.30 | 3.67 |
Month | Electricity Consumption (kWh) | Electricity Cost (USD) | HVAC (KWh) | Max. Surface Temperature (°C) 1 | Max. Green Roof Temperature (°C) 2 |
---|---|---|---|---|---|
January | 338,347.93 | 57,519.15 | 140,865.43 | 44.56 | 22.89 |
February | 248,121.81 | 42,180.71 | 50,639.32 | 47.91 | 26.24 |
March | 236,843.55 | 40,263.40 | 39,361.06 | 48.77 | 27.10 |
April | 197,482.49 | 33,572.02 | 0.00 | 49.34 | 27.67 |
May | 200,753.10 | 34,128.03 | 3270.61 | 53.47 | 31.80 |
June | 225,565.28 | 38,346.10 | 28,082.79 | 55.28 | 33.61 |
July | 248,121.81 | 42,180.71 | 50,639.32 | 57.40 | 35.73 |
August | 257,144.42 | 43,714.55 | 59,661.93 | 56.08 | 34.41 |
September | 250,377.47 | 42,564.17 | 52,894.97 | 54.75 | 33.08 |
October | 230,076.59 | 39,113.02 | 32,594.10 | 52.13 | 30.46 |
November | 214,287.02 | 36,428.79 | 16,804.53 | 50.41 | 28.74 |
December | 270,678.34 | 46,015.32 | 73,195.85 | 45.92 | 24.25 |
Category | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-green roof | 232,377 | 207,204 | 204,653 | 203,863 | 219,270 | 237,836 | 268,465 | 248,233 | 231,672 | 210,216 | 204,293 | 219,226 |
Green roof | 201,536 | 198,659 | 198,324 | 198,196 | 199,457 | 201,231 | 204,231 | 202,243 | 200,636 | 198,628 | 198,154 | 200,064 |
Month | Solar Radiation (kWh/m2/day) 1 | Electricity Generation Quantities (GWh/day) 2 | |||||
---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | ||
Jan. | 4.85 | 2.84 | 6.58 | 7.77 | 11.42 | 20.90 | 42.32 |
Feb. | 5.01 | 4.04 | 6.96 | 8.54 | 15.00 | 23.11 | 50.39 |
Mar. | 5.31 | 5.65 | 8.19 | 9.32 | 14.29 | 32.32 | 54.52 |
Apr. | 5.59 | 6.63 | 8.33 | 14.27 | 19.07 | 31.83 | 58.80 |
May | 5.44 | 7.74 | 9.48 | 12.84 | 27.16 | 39.77 | 67.94 |
Jun. | 5.68 | 7.70 | 12.67 | 15.90 | 30.53 | 47.47 | 80.20 |
Jul. | 6.18 | 7.81 | 11.77 | 15.84 | 37.61 | 49.87 | 85.87 |
Aug. | 6.26 | 7.03 | 11.35 | 14.97 | 34.68 | 52.10 | 71.84 |
Sep. | 6.11 | 6.07 | 8.93 | 13.20 | 28.10 | 54.60 | 77.97 |
Oct. | 5.5 | 6.48 | 7.00 | 11.61 | 23.45 | 43.90 | 61.10 |
Nov. | 5.12 | 5.07 | 7.77 | 9.07 | 19.70 | 35.63 | 41.47 |
Dec. | 4.53 | 4.74 | 6.26 | 10.06 | 19.00 | 32.23 | 35.81 |
Category | Item | Quantity | Unit Cost (USD) | Cost (USD) |
---|---|---|---|---|
Installation | Extensive grid (grid) | 6394 | 5 | 31,970.00 |
Planting medium (ton) 1 | 261.73 | 68 | 17,797.49 | |
Plants (plant) 2 | 25,576 | 9.99 | 255,504.24 | |
Irrigation system (unit) | 1 | 3800 | 6000 | |
Operation and maintenance | Water (L) 3 | 1,116,801.8 | 0.00185 | 2065.20 |
Electricity (kWh) 4 | 6172.49 | 0.17 | 1049.32 |
Category | Item | Quantity | Unit Cost (USD) | Cost (USD) |
---|---|---|---|---|
Installation | PV module cost (module) | 1189 | 141.75 | 168,540.75 |
Structure cost (USD) | 1 | 278,967.09 | 278,967.09 | |
Electric distribution system cost (USD) | 1 | 132,870.07 | 132,870.07 | |
Other costs (USD) 1 | 1 | 572.84 | 572.84 | |
Operation and maintenance | Operation and maintenance (USD) 2 | 1 | 11,619.02 | 11,619.02 |
Discount Rate (%) | Green Roof System | BIPV System | ||||
---|---|---|---|---|---|---|
Discounted Cost (USD) | Discounted Energy Value (USD) | LCOE2 | Discounted Cost (USD) | Discounted Energy Value (USD) | LCOE2 | |
1.00 | 367,474.97 | 877,217.07 | 0.4189 | 790,622.30 | 2,541,821.88 | 0.3110 |
2.00 | 362,198.60 | 794,863.78 | 0.4557 | 770,938.30 | 2,303,195.21 | 0.3347 |
3.00 | 357,607.92 | 723,212.80 | 0.4945 | 753,812.35 | 2,095,579.52 | 0.3597 |
4.00 | 353,599.07 | 660,642.89 | 0.5352 | 738,856.96 | 1,914,277.11 | 0.3860 |
5.00 | 350,085.53 | 605,803.75 | 0.5779 | 725,749.36 | 1,755,375.36 | 0.4134 |
7.00 | 344,267.00 | 514,988.38 | 0.6685 | 704,042.76 | 1,492,228.99 | 0.4718 |
10.00 | 337,787.39 | 413,855.06 | 0.8162 | 679,869.97 | 1,199,185.34 | 0.5669 |
15.00 | 330,766.54 | 304,273.99 | 1.0871 | 653,678.02 | 881,663,52 | 0.7414 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, S. Economic Feasibility Comparison between Building-Integrated Photovoltaics and Green Systems in Northeast Texas. Energies 2023, 16, 4672. https://doi.org/10.3390/en16124672
Kim S, Kim S. Economic Feasibility Comparison between Building-Integrated Photovoltaics and Green Systems in Northeast Texas. Energies. 2023; 16(12):4672. https://doi.org/10.3390/en16124672
Chicago/Turabian StyleKim, Sojung, and Sumin Kim. 2023. "Economic Feasibility Comparison between Building-Integrated Photovoltaics and Green Systems in Northeast Texas" Energies 16, no. 12: 4672. https://doi.org/10.3390/en16124672
APA StyleKim, S., & Kim, S. (2023). Economic Feasibility Comparison between Building-Integrated Photovoltaics and Green Systems in Northeast Texas. Energies, 16(12), 4672. https://doi.org/10.3390/en16124672