Design of a Gate-Driving Cell for Enabling Extended SiC MOSFET Voltage Blocking
Abstract
:1. Introduction
2. The Proposed Driving Cell
2.1. Off-Steady-State Operation
2.2. Turn-On Transition
2.3. Turn-Off Transition
3. Parameter Calculations
3.1. Parameter Calculation of
3.2. Parameter Calculation of
3.3. Parameter Calculation of
3.4. Parameter Calculation of
4. Simulation Verification
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millan, J.; Godignon, P.; Perpina, X.; Perez-Tomas, A.; Rebollo, J. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans. Power Electron. 2013, 29, 2155–2163. [Google Scholar] [CrossRef]
- Hazra, S.; De, A.; Cheng, L.; Palmour, J.; Schupbach, M.; Hull, B.A.; Allen, S.; Bhattacharya, S. High Switching Performance of 1700 V, 50 A SiC Power MOSFET over Si IGBT/BiMOSFET for Advanced Power Conversion Applications. IEEE Trans. Power Electron. 2015, 31, 4742–4754. [Google Scholar] [CrossRef]
- Mainali, K.; Tripathi, A.; Madhusoodhanan, S.; Kadavelugu, A.; Patel, D.; Hazra, S.; Hatua, K.; Bhattacharya, S. A Transformerless Intelligent Power Substation: A three-phase SST enabled by a 15-kV SiC IGBT. IEEE Power Electron. Mag. 2015, 2, 31–43. [Google Scholar] [CrossRef]
- Eni, E.-P.; Kerekes, T.; Uhrenfeldt, C.; Teodorescu, R.; Munk-Nielsen, S. Design of low impedance busbar for 10 kV, 100 A 4H-SiC MOSFET short-circuit tester using axial capacitors. In Proceedings of the 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aachen, Germany, 22–25 June 2015. [Google Scholar] [CrossRef]
- Bolotnikov, A.; Losee, P.; Permuy, A.; Dunne, G.; Kennerly, S.; Rowden, B.; Nasadoski, J.; Harfman-Todorovic, M.; Raju, R.; Tao, F.; et al. Overview of 1.2 kV–2.2 kV SiC MOSFETs targeted for industrial power conversion applications. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 2445–2452. [Google Scholar] [CrossRef]
- Ji, S.; Lu, T.; Zhao, Z.; Yu, H.; Yuan, L. Series-Connected HV-IGBTs Using Active Voltage Balancing Control With Status Feedback Circuit. IEEE Trans. Power Electron. 2014, 30, 4165–4174. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, X.; Zhang, F.; Wang, K.; Chen, W.; Wang, L.; Pei, Y. A Compact Gate Control and Voltage-Balancing Circuit for Series-Connected SiC MOSFETs and Its Application in a DC Breaker. IEEE Trans. Ind. Electron. 2017, 64, 8299–8309. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, S.; Xiao, Q.; Sheng, K. A 3600 V/80 A Series--Parallel-Connected Silicon Carbide MOSFETs Module With a Single External Gate Driver. IEEE Trans. Power Electron. 2013, 29, 2296–2306. [Google Scholar] [CrossRef]
- Hess, H.L.; Baker, R.J.J. Transformerless capacitive coupling of gate signals for series operation of power MOS devices. IEEE Trans. Power Electron. 2000, 15, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Grbovic, P.J. High-Voltage Auxiliary Power Supply Using Series-Connected MOSFETs and Floating Self-Driving Technique. IEEE Trans. Ind. Electron. 2009, 56, 1446–1455. [Google Scholar] [CrossRef]
- Grbovic, P. Loss-Free Balancing Circuit for Series Connection of Electrolytic Capacitors Using an Auxiliary Switch-Mode Power Supply. IEEE Trans. Power Electron. 2009, 24, 221–231. [Google Scholar] [CrossRef]
- Yang, C.; Pei, Y.; Xu, Y.; Zhang, F.; Wang, L.; Zhu, M.; Yu, L. A Gate Drive Circuit and Dynamic Voltage Balancing Control Method Suitable for Series-Connected SiC mosfets. IEEE Trans. Power Electron. 2019, 35, 6625–6635. [Google Scholar] [CrossRef]
- Lim, T.C.; Williams, B.W.; Finney, S.J.; Palmer, P.R. Series-Connected IGBTs Using Active Voltage Control Technique. IEEE Trans. Power Electron. 2012, 28, 4083–4103. [Google Scholar] [CrossRef]
- Withanage, R.; Shammas, N. Series Connection of Insulated Gate Bipolar Transistors (IGBTs). IEEE Trans. Power Electron. 2011, 27, 2204–2212. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X.; Chen, W.; Wang, L. Voltage Balancing Control of Series-Connected SiC MOSFETs by Using Energy Recovery Snubber Circuits. IEEE Trans. Power Electron. 2020, 35, 10200–10212. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X.; Ren, Y.; Feng, L.; Chen, W.; Pei, Y. A Hybrid Active Gate Drive for Switching Loss Reduction and Voltage Balancing of Series-Connected IGBTs. IEEE Trans. Power Electron. 2016, 32, 7469–7481. [Google Scholar] [CrossRef]
- Teerakawanich, N.; Johnson, M. Design Optimization of Quasi-Active Gate Control for Series-Connected Power Devices. IEEE Trans. Power Electron. 2013, 29, 2705–2714. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, X.; Zhang, F.; Wang, F.; Tolbert, L.M.; Pei, Y. A Single Gate Driver Based Solid-State Circuit Breaker Using Series Connected SiC MOSFETs. IEEE Trans. Power Electron. 2018, 34, 2002–2006. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, X.; Zhang, F.; Chen, W. Analysis of series SiC MOSFETs stack using a single standard gate driver. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 1664–1668. [Google Scholar] [CrossRef]
- Alves, L.F.S.; Lefranc, P.; Jeannin, P.-O.; Sarrazin, B. Review on SiC-MOSFET devices and associated gate drivers. In Proceedings of the IEEE International Conference on Industrial Technology, Lyon, France, 20–22 February 2018; pp. 824–829. [Google Scholar] [CrossRef]
- Batard, C.; Ginot, N.; Bouguet, C. Design of a gate driver for SiC MOSFET module for applications up to 1200 V. IET Power Electron. 2020, 13, 1364–1373. [Google Scholar] [CrossRef]
- Kumar, A.; Losito, M.; Moradpour, M.; Gatto, G. Current Source Gate Driver for SiC MOSFETs in Power Electronics Applications. In Proceedings of the 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2022, Sorrento, Italy, 22–24 June 2022; pp. 523–527. [Google Scholar] [CrossRef]
- BZX55-Series Vishay Semiconductors Small Signal Zener Diodes. Available online: https://www.vishay.com/docs/85604/bzx55.pdf (accessed on 19 September 2022).
Component | Value | Component | Value |
---|---|---|---|
1200 V | 6.8 V | ||
1800 µH | 22 V | ||
STPSC1206 | US1M ULTRA-FAST 700 V, 1 A | ||
300 pF | 1.5 Ω | ||
10 kΩ | MOSFETs | SCT20N120 SiC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issa, W.; Ortiz Gonzalez, J.; Alatise, O. Design of a Gate-Driving Cell for Enabling Extended SiC MOSFET Voltage Blocking. Energies 2022, 15, 7768. https://doi.org/10.3390/en15207768
Issa W, Ortiz Gonzalez J, Alatise O. Design of a Gate-Driving Cell for Enabling Extended SiC MOSFET Voltage Blocking. Energies. 2022; 15(20):7768. https://doi.org/10.3390/en15207768
Chicago/Turabian StyleIssa, Walid, Jose Ortiz Gonzalez, and Olayiwola Alatise. 2022. "Design of a Gate-Driving Cell for Enabling Extended SiC MOSFET Voltage Blocking" Energies 15, no. 20: 7768. https://doi.org/10.3390/en15207768
APA StyleIssa, W., Ortiz Gonzalez, J., & Alatise, O. (2022). Design of a Gate-Driving Cell for Enabling Extended SiC MOSFET Voltage Blocking. Energies, 15(20), 7768. https://doi.org/10.3390/en15207768