Communicating the Values and Benefits of Home Solar Prosumerism
Abstract
:1. Introduction
2. Background
2.1. Energy Policy and Solar PV in Spain
2.2. Previous Studies of Self-Consumption and Solar PV Efficiency
Author, Year | Ref | Approach | Key Findings | Key Parameters | |
---|---|---|---|---|---|
Escobar et al., 2020 | [52] | Analyze the profitability of PVSC for different household sizes in several EU countries. Use the average residential PV size and average household consumption profile; do not consider remuneration of excess No optimization, sensitivity analysis varying different parameters | Despite the more favorable new legislative framework, support policies are economically more favorable in other countries | Invest costs: 1350 €/kWp PVsize: 3 kWp Annual demand: 2.16–3.29 MWh Variable part of electr. costs: 12.3 ct€/kWh Feed-in tariff (FIT): 0 ct€/kWh SC-rate: 24.6–37.7% | Depreciation/Interest rate: 4.3% Ann.PV yield: 1550 kWh/kWp Time horizon: 25 y IRR/ NPV: n/a- Electrcity price trend: +5%/y Degradation: 0.5%/y |
López-Prol et al., 2020 | [20] | Assess the profitability of PV self-consumption for residential and commercial buildings in Spain. Parameters study varying SC rate and other factors, but do not rely on no time series and do not perform any optimization | With current installation costs, residential PVSC obtains positive returns across entire irradiation range, below 5% for horizontal and above 5% for optimally-inclined panels Residential prosumers could obtain 10% profitability by achieving ~75% self-consumption at current installation costs | Invest costs: 1690 €/kWp PVsize: n/a Annual demand: n/a Variable part of electr. costs: 16.4 ct€/kWh Feed-in tariff (FIT): 4.9 ct€/kWh SC-rate: 33% | Depreciation/Interest rate: 6.7% Ann.PV yield: 1460 kWh/kWp Time horizon: 25 y IRR/ NPV: n/a- Electrcity price trend: +2%/y Degradation: 0.8%/y |
Roldán Fernández et al., 2021 | [51] | Assess the profitability of residential PV self-consumption in Spain. Use hourly average load for a dwelling in Spain | A 1.5–2 kWp PV commercial PVSC kit yields an optimum net billing situation for an average dwelling Mention community SC as an option for increasing profitability of SC installations | Invest costs: 720 fixed + 820 €/kWp PVsize: 1.5 kWp Annual demand: 2.24 MWh Variable part of electr. costs: 12.3 ct€/kWh Feed-in tariff (FIT): 5 ct€/kWh SC-rate: 24–28% | Depreciation/Interest rate: 4% Ann.PV yield: n/a Time horizon: 30 y IRR/ NPV: 12.7%/3073€ Electrcity price trend: +2.5%/y Degradation: 0.5%/y |
Gallego-Castillo et al. 2021 | [19] | perform regional analysis and optimization of PVSC installations under the new legal framework Use average hourly profiles of final electricity consumption | Use average hourly load curves for Spanish households (1–4 persons per HH, and weekday/weekend) | Invest costs: 720 fixed + 820 €/kWp PVsize: 3 kWp Annual demand: n/a Variable part of electr. costs: 12.3 ct€/kWh Feed-in tariff (FIT): n/a SC-rate: 24.6–37.7% | Depreciation/Interest rate: 4.3% Ann.PV yield: 1550 kWh/kWp Time horizon: 30 y IRR/ NPV: 2.5–6.8%/1102–1808€ Electrcity price trend: +5%/y Degradation: 0.5% |
Olivieri et al. (2020) | [53] | Case study for university campus | Invest costs: 800 €/kWp PVsize: 80 kWp Annual demand: 117.7 MWh Variable part of electr. costs: variable Feed-in tariff (FIT): variable SC-rate: 58% | Depreciation/Interest rate: 5.0% Ann.PV yield: 1471 kWh/kWp Time horizon: 30 y IRR/ NPV: 13.1%/78,800€ Electrcity price trend: +2%/y Degradation: 0.5% |
2.3. Energy Communication and the Benefits of PVSC
3. Materials and Methods
3.1. Web Screening and Solicitation of PVSC Proposals
3.1.1. Assessment of PVSC Installation Proposals
- System costs (EUR 1000 fixed installation costs, 1200 €/kWp hardware costs)
- Annual degradation: 0.5%
- System loss: 14%
- Annual generation: 1618 kWh/kWp (based on information provided in [68]).
- Variable part of the electricity price (price per kWh): 0.13 €/kWh
- Feed-in remuneration (maximum monthly zero net balance): 0.05 €/kWh
- Depreciation rate: 5%
- Annual electricity price increase (variable part): −0%
- Time horizon for investment: 20 years
3.1.2. Load, Consumption, and Optimization
4. Results
4.1. Analysis of PVSC Proposals
4.2. Optimum Size and Benefit of PVSC Based on Minute by Minute Calculations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. Renewable Power—Analysis; International Energy Agency: Paris, France, 2021. [Google Scholar]
- EU Clean Energy for All Europeans Package. Available online: https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en (accessed on 4 March 2021).
- Parag, Y.; Sovacool, B.K. Electricity Market Design for the Prosumer Era. Nat. Energy 2016, 1, 1–6. [Google Scholar] [CrossRef]
- Palm, J.; Eidenskog, M.; Luthander, R. Sufficiency, Change, and Flexibility: Critically Examining the Energy Consumption Profiles of Solar PV Prosumers in Sweden. Energy Res. Soc. Sci. 2018, 39, 12–18. [Google Scholar] [CrossRef]
- Galvin, R. I’ll follow the Sun: Geo-Sociotechnical Constraints on Prosumer Households in Germany. Energy Res. Soc. Sci. 2020, 65, 101455. [Google Scholar] [CrossRef]
- Öhrlund, I.; Stikvoort, B.; Schultzberg, M.; Bartusch, C. Rising with the Sun? Encouraging Solar Electricity Self-Consumption among Apartment Owners in Sweden. Energy Res. Soc. Sci. 2020, 64, 101424. [Google Scholar] [CrossRef]
- Zapata Riveros, J.; Kubli, M.; Ulli-Beer, S. Prosumer Communities as Strategic Allies for Electric Utilities: Exploring Future Decentralization Trends in Switzerland. Energy Res. Soc. Sci. 2019, 57, 101219. [Google Scholar] [CrossRef]
- Rooftop Solar for All: Closing the Gap between the Technically Possible and the Achievable. Energy Res. Soc. Sci. 2021, 80, 102203. [CrossRef]
- Girard, A.; Gago, E.J.; Ordoñez, J.; Muneer, T. Spain’s Energy Outlook: A Review of PV Potential and Energy Export. Renew. Energy 2016, 86, 703–715. [Google Scholar] [CrossRef]
- Perpiña Castillo, C.; Batista e Silva, F.; Lavalle, C. An Assessment of the Regional Potential for Solar Power Generation in EU-28. Energy Policy 2016, 88, 86–99. [Google Scholar] [CrossRef]
- Ingeborgrud, L.; Heidenreich, S.; Ryghaug, M.; Skjølsvold, T.M.; Foulds, C.; Robison, R.; Buchmann, K.; Mourik, R. Expanding the Scope and Implications of Energy Research: A Guide to Key Themes and Concepts from the Social Sciences and Humanities. Energy Res. Soc. Sci. 2020, 63, 101398. [Google Scholar] [CrossRef]
- Barrios-O’neill, D.; Schuitema, G. Online Engagement for Sustainable Energy Projects: A Systematic Review and Framework for Integration. Renew. Sustain. Energy Rev. 2016, 54, 1611–1621. [Google Scholar] [CrossRef]
- Endrejat, P.C.; Güntner, A.V.; Ehrenholz, S.; Kauffeld, S. Tailored Communication Increases the Perceived Benefits of Solar Energy. Energy Policy 2020, 144, 111714. [Google Scholar] [CrossRef]
- Colasante, A.; D’Adamo, I.; Morone, P. Nudging for the Increased Adoption of Solar Energy? Evidence from a Survey in Italy. Energy Res. Soc. Sci. 2021, 74, 101978. [Google Scholar] [CrossRef]
- Kratschmann, M.; Dütschke, E. Selling the Sun: A Critical Review of the Sustainability of Solar Energy Marketing and Advertising in Germany. Energy Res. Soc. Sci. 2021, 73, 101919. [Google Scholar] [CrossRef]
- Cozen, B.; Endres, D.; Peterson, T.R.; Horton, C.; Barnett, J.T. Energy Communication: Theory and Praxis Towards a Sustainable Energy Future. Environ. Commun. 2018, 12, 289–294. [Google Scholar] [CrossRef]
- Brown, D.; Hall, S.; Davis, M.E. What Is Prosumerism for? Exploring the Normative Dimensions of Decentralised Energy Transitions. Energy Res. Soc. Sci. 2020, 66, 101475. [Google Scholar] [CrossRef]
- Campos, I.; Marín-González, E. People in Transitions: Energy Citizenship, Prosumerism and Social Movements in Europe. Energy Res. Soc. Sci. 2020, 69, 101718. [Google Scholar] [CrossRef]
- López Prol, J.; Steininger, K.W. Photovoltaic Self-Consumption Is Now Profitable in Spain: Effects of the New Regulation on Prosumers’ Internal Rate of Return. Energy Policy 2020, 146, 111793. [Google Scholar] [CrossRef]
- Gallego-Castillo, C.; Heleno, M.; Victoria, M. Self-Consumption for Energy Communities in Spain: A Regional Analysis under the New Legal Framework. Energy Policy 2021, 150, 112144. [Google Scholar] [CrossRef]
- Gómez, A.; Dopazo, C.; Fueyo, N. The “Cost of Not Doing” Energy Planning: The Spanish Energy Bubble. Energy 2016, 101, 424–436. [Google Scholar] [CrossRef]
- De La Hoz, J.; Martín, H.; Ballart, J.; Có, F.; Es Graells, M. Evaluating the New Control Structure for the Promotion of Grid Connectedphotovoltaic Systems in Spain: Performance Analysis of the Period 2008–2010. Renew. Sustain. Energy Rev. 2008, 19, 541–554. [Google Scholar] [CrossRef]
- Diego Rosell, A. PV Magazine. 2021. Available online: https://www.pv-magazine.com/2021/1/page/15/ (accessed on 1 January 2022).
- Alonso, P.M.; Hewitt, R.; Pacheco, J.D.; Bermejo, L.R.; Jiménez, V.H.; Guillén, J.V.; Bressers, H.; de Boer, C. Losing the Roadmap: Renew. Energy Paralysis in Spain and Its Implications for the EU Low Carbon Economy. Renew. Energy 2016, 89, 680–694. [Google Scholar] [CrossRef]
- Del Río, P.; Mir-Artigues, P. Support for Solar PV Deployment in Spain: Some Policy Lessons. Renew. Sustain. Energy Rev. 2012, 16, 5557–5566. [Google Scholar] [CrossRef]
- Gürtler, K.; Postpischil, R.; Quitzow, R. The Dismantling of Renew. Energy Policies: The Cases of Spain and the Czech Republic. Energy Policy 2019, 133, 110881. [Google Scholar] [CrossRef]
- Ibarloza, A.; Heras-Saizarbitoria, I.; Allur, E.; Larrea, A. Regulatory Cuts and Economic and Financial Performance of Spanish Solar Power Companies: An Empirical Review. Renew. Sustain. Energy Rev. 2018, 92, 784–793. [Google Scholar] [CrossRef]
- Mir-Artigues, P.; Cerdá, E.; del Río, P. Analyzing the Impact of Cost-Containment Mechanisms on the Profitability of Solar PV Plants in Spain. Renew. Sustain. Energy Rev. 2015, 46, 166–177. [Google Scholar] [CrossRef]
- López Prol, J. Regulation, Profitability and Diffusion of Photovoltaic Grid-Connected Systems: A Comparative Analysis of Germany and Spain. Renew. Sustain. Energy Rev. 2018, 91, 1170–1181. [Google Scholar] [CrossRef]
- Escobar, P.; Martínez, E.; Saenz-Díez, J.C.; Jiménez, E.; Blanco, J. Profitability of Self-Consumption Solar PV System in Spanish Households: A Perspective Based on European Regulations. Renew. Energy 2020, 160, 746–755. [Google Scholar] [CrossRef]
- Mir-Artigues, P.; del Río, P.; Cerdá, E. The Impact of Regulation on Demand-Side Generation. The Case of Spain. Energy Policy 2018, 121, 286–291. [Google Scholar] [CrossRef]
- Gabaldón-Estevan, D.; Peñalvo-López, E.; Solar, D.A. The Spanish Turn against Renew. Energy Development. Sustainability 2018, 10, 1208. [Google Scholar] [CrossRef] [Green Version]
- Monzón-Chavarrías, M.; López-Mesa, B.; Resende, J.; Corvacho, H. The NZEB Concept and Its Requirements for Residential Buildings Renovation in Southern Europe: The Case of Multi-Family Buildings from 1961 to 1980 in Portugal and Spain. J. Build. Eng. 2021, 34, 101918. [Google Scholar] [CrossRef]
- Blanco-Díez, P.; Díez-Mediavilla, M.; Alonso-Tristán, C. Review of the Legislative Framework for the Remuneration of Photovoltaic Production in Spain: A Case Study. Sustainability 2020, 12, 1214. [Google Scholar] [CrossRef] [Green Version]
- Masson, G.; Kaizuka, I. IEA PVPS Report—Trends in Photovoltaic Applications 2020; International Energy Agency: Paris, France, 2020; Available online: https://iea-pvps.org/trends_reports/trends-in-pv-applications-2020/ (accessed on 15 October 2021).
- Unión Española Fotovoltaica Informe Anual: Oportunidad Para La Sostenibilidad Energía Solar Fotovoltaica. 2021. Available online: https://www.unef.es/es/recursos-informes (accessed on 1 November 2021).
- European Commission Directive (EU). 2019/944 of the European Parliament and of the Council of 5 June 2019 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU. Off. J. Eur. Union 2019, 158, 125–199. [Google Scholar]
- Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renew. Energy Communities under the 2019 European Clean Energy Package—Governance Model for the Energy Clusters of the Future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [Google Scholar] [CrossRef]
- Montoya, F.G.; Aguilera, M.J.; Manzano-Agugliaro, F. Renew. Energy Production in Spain: A Review. Renew. Sustain. Energy Rev. 2014, 33, 509–531. [Google Scholar] [CrossRef]
- Ministerio para la Transición Ecológica y el Reto Demográfico Borrador Actualizado Del Plan Nacional Integrado de Energía y Clima 2021–2030. 2020. Available online: https://www.miteco.gob.es/es/prensa/pniec.aspx (accessed on 11 November 2021).
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A High-Resolution Geospatial Assessment of the Rooftop Solar Photovoltaic Potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. [Google Scholar] [CrossRef]
- Unión Española Fotovoltaica. El Autoconsumo Muestra Su Resiliencia y Avanza Un 30%—UNEF. Available online: https://unef.es/2021/01/el-autoconsumo-muestra-su-resiliencia-y-avanza-un-30/?utm_source=rss&utm_medium=rss&utm_campaign=el-autoconsumo-muestra-su-resiliencia-y-avanza-un-30 (accessed on 8 March 2021).
- Gomez-Exposito, A.; Arcos-Vargas, A.; Gutierrez-Garcia, F. On the Potential Contribution of Rooftop PV to a Sustainable Electricity Mix: The Case of Spain. Renew. Sustain. Energy Rev. 2020, 132, 110074. [Google Scholar] [CrossRef]
- Ibañez Iralde, N.S.; Pascual, J.; Salom, J. Energy Retrofit of Residential Building Clusters. A Literature Review of Crossover Recommended Measures, Policies Instruments and Allocated Funds in Spain. Energy Build. 2021, 252, 111409. [Google Scholar] [CrossRef]
- Heras-Saizarbitoria, I.; Cilleruelo, E.; Zamanillo, I. Public Acceptance of Renewables and the Media: An Analysis of the Spanish PV Solar Experience. Renew. Sustain. Energy Rev. 2011, 15, 4685–4696. [Google Scholar] [CrossRef]
- Sorman, A.H.; García-Muros, X.; Pizarro-Irizar, C.; González-Eguino, M. Lost (and Found) in Transition: Expert Stakeholder Insights on Low-Carbon Energy Transitions in Spain. Energy Res. Soc. Sci. 2020, 64, 1–19. [Google Scholar] [CrossRef]
- Santiago, I.; Moreno-Munoz, A.; Quintero-Jiménez, P.; Garcia-Torres, F.; Gonzalez-Redondo, M.J. Electricity Demand during Pandemic Times: The Case of the COVID-19 in Spain. Energy Policy 2021, 148, 111964. [Google Scholar] [CrossRef]
- Sovacool, B.K. How Long Will It Take? Conceptualizing the Temporal Dynamics of Energy Transitions. Energy Res. Soc. Sci. 2016, 13, 202–215. [Google Scholar] [CrossRef] [Green Version]
- López Prol, J.; Steininger, K.W. Photovoltaic Self-Consumption Regulation in Spain: Profitability Analysis and Alternative Regulation Schemes. Energy Policy 2017, 108, 742–754. [Google Scholar] [CrossRef]
- CNMC. Informe de Supervisión Del Mercado Minorista de Electricidad. Report IS/DE/027/20; CNMC: Madrid, Spain, 2020. [Google Scholar]
- Roldán Fernández, J.M.; Burgos Payán, M.; Riquelme Santos, J.M. Profitability of Household Photovoltaic Self-Consumption in Spain. J. Clean. Prod. 2021, 279, 123439. [Google Scholar] [CrossRef]
- Escobar, P.; Martínez, E.; Saenz-Díez, J.C.; Jiménez, E.; Blanco, J. Modeling and Analysis of the Electricity Consumption Profile of the Residential Sector in Spain. Energy Build. 2020, 206, 109269. [Google Scholar] [CrossRef]
- Olivieri, L.; Caamaño-Martín, E.; Sassenou, L.-N.; Olivieri, F. Contribution of Photovoltaic Distributed Generation to the Transition towards an Emission-Free Supply to University Campus: Technical, Economic Feasibility and Carbon Emission Reduction at the Universidad Politécnica de Madrid. Renew. Energy 2020, 162, 1703–1714. [Google Scholar] [CrossRef]
- Mulder, G.; Six, D.; Claessens, B.; Broes, T.; Omar, N.; Mierlo, J. Van The Dimensioning of PV-Battery Systems Depending on the Incentive and Selling Price Conditions. Appl. Energy 2013, 111, 1126–1135. [Google Scholar] [CrossRef]
- Schopfer, S.; Tiefenbeck, V.; Staake, T. Economic Assessment of Photovoltaic Battery Systems Based on Household Load Profiles. Appl. Energy 2018, 223, 229–248. [Google Scholar] [CrossRef]
- Ayala-Gilardón, A.; Sidrach-de-Cardona, M.; Mora-López, L. Influence of Time Resolution in the Estimation of Self-Consumption and Self-Sufficiency of Photovoltaic Facilities. Appl. Energy 2018, 229, 990–997. [Google Scholar] [CrossRef]
- Cao, S.; Sirén, K. Impact of Simulation Time-Resolution on the Matching of PV Production and Household Electric Demand. Appl. Energy 2014, 128, 192–208. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic Self-Consumption in Buildings: A Review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Castillo, G.; Rus-Casas, C.; Tina, G.M.; Muñoz-Rodriguez, F.J. Effects of Smart Meter Time Resolution When Analyzing Photovoltaic Self-Consumption System on a Daily and Annual Basis. Renew. Energy 2021, 164, 889–896. [Google Scholar] [CrossRef]
- Talavera, D.L.; De La Casa, J.; Muñoz-Cerón, E.; Almonacid, G. Grid Parity and Self-Consumption with Photovoltaic Systems under the Present Regulatory Framework in Spain: The Case of the University of Jaén Campus. Renew. Sustain. Energy Rev. 2014, 33, 752–771. [Google Scholar] [CrossRef]
- Stauch, A.; Gamma, K. Cash vs. Solar Power: An Experimental Investigation of the Remuneration-Related Design of Community Solar Offerings. Energy Policy 2020, 138, 111216. [Google Scholar] [CrossRef]
- Stikvoort, B.; Bartusch, C.; Juslin, P. Different Strokes for Different Folks? Comparing pro-Environmental Intentions between Electricity Consumers and Solar Prosumers in Sweden. Energy Res. Soc. Sci. 2020, 69, 101552. [Google Scholar] [CrossRef]
- Tibbits, T.N.D.; Beutel, P.; Grave, M.; Karcher, C.; Oliva, E.; Siefer, G.; Wekkeli, A.; Schachtner, M.; Dimroth, F.; Bett, A.W.; et al. “Counting the Sun”: A Dutch Public Awareness Campain on PV Performance. In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdamn, The Netherlands; 2014; p. 4161. Available online: https://www.eupvsec-proceedings.com/proceedings?paper=31622 (accessed on 1 September 2021).
- Beriain Bañares, A.; Santos Silva, M.F.; Rodríguez Rodríguez, S. Green but Ignored? The Irrelevance of Television Advertisements on Energy Sustainability in Spain and Its Impact on Consumer Perceptions. Energy Res. Soc. Sci. 2021, 73, 1–10. [Google Scholar] [CrossRef]
- Nolden, C.; Barnes, J.; Nicholls, J. Community Energy Business Model Evolution: A Review of Solar Photovoltaic Developments in England. Renew. Sustain. Energy Rev. 2020, 122, 109722. [Google Scholar] [CrossRef]
- Romero-Rubio, C.; de Andrés Díaz, J.R. Sustainable Energy Communities: A Study Contrasting Spain and Germany. Energy Policy 2015, 85, 397–409. [Google Scholar] [CrossRef]
- Zafrilla, J.E.; Arce, G.; Cadarso, M.Á.; Córcoles, C.; Gómez, N.; López, L.A.; Monsalve, F.; Tobarra, M.Á. Triple Bottom Line Analysis of the Spanish Solar Photovoltaic Sector: A Footprint Assessment. Renew. Sustain. Energy Rev. 2019, 114, 109311. [Google Scholar] [CrossRef]
- JRC Photovoltaic Geographical Information System (PVGIS)—European Commission. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/#PVP (accessed on 5 March 2021).
- Autosolar Energy Solutions. Available online: https://autosolar.es/kits-solares-conexion-red/ (accessed on 5 April 2021).
- Selectra Kit Solar. Available online: https://selectra.es/autoconsumo/info/instalacion/kit-solar (accessed on 5 April 2021).
- SolarPlak Solar Online Store. Available online: https://solarplak.es/kits-solares-autoconsumo (accessed on 5 April 2021).
- Voluntary Price for the Small Consumer (PVPC)|Red Eléctrica de España. Available online: https://www.ree.es/en/activities/operation-of-the-electricity-systemvoluntary-price-small-consumer-pvpc (accessed on 23 November 2021).
- Pereira, L.; Quintal, F.; Gonçalves, R.; Jardim Nunes, N. SustData: A Public Dataset for ICT4S Electric Energy Research. In Proceedings of the 2nd International Conference on ICT for Sustainability (ICT4S 2014), Stockholm, Sweden, 24–27 August 2014. [Google Scholar] [CrossRef] [Green Version]
- IDEA. Consumos Del Sector Residencial en España Resumen de Información Básica; Instituto para la Diversificación y Ahorro de la Energía: Madrid, Spain, 2011. [Google Scholar]
- D’Agostino, A.L.; Sovacool, B.K.; Trott, K.; Ramos, C.R.; Saleem, S.; Ong, Y. What’s the State of Energy Studies Research: A Content Analysis of Three Leading Journals from 1999 to 2008. Energy 2011, 36, 508–519. [Google Scholar] [CrossRef]
- Herbes, C.; Ramme, I. Online Marketing of Green Electricity in Germany-A Content Analysis of Providers’ Websites. Energy Policy 2014, 66, 257–266. [Google Scholar] [CrossRef]
- Levihn, F. CO2 Emissions Accounting: Whether, How, and When Different Allocation Methods Should Be Used. Energy 2014, 68, 811–818. [Google Scholar] [CrossRef]
- Red Eléctrica de España Inventory of CO2 Emissions of Red Eléctrica de España, S.A.U.; Scope and Methodology; 2017. Available online: https://www.ree.es/sites/default/files/04_SOSTENIBILIDAD/Documentos/inventory_of_CO2_emissions_REE_scope_and_methodology_2013_v2.pdf (accessed on 1 September 2021).
- Seyfang, G.; Park, J.J.; Smith, A. A Thousand Flowers Blooming? An Examination of Community Energy in the UK. Energy Policy 2013, 61, 977–989. [Google Scholar] [CrossRef]
- Islar, M.; Busch, H. “We Are Not in This to Save the Polar Bears!”—The Link between Community Renew. Energy Development and Ecological Citizenship. Innovation 2016, 29, 303–319. [Google Scholar] [CrossRef]
- Bauwens, T. Explaining the Diversity of Motivations behind Community Renew. Energy. Energy Policy 2016, 93, 278–290. [Google Scholar] [CrossRef]
- Wuebben, D.; Romero-Luis, J.; Gertrudix, M. Citizen Science and Citizen Energy Communities: A Systematic Review and Potential Alliances for SDGs. Sustainability 2020, 12, 10096. [Google Scholar] [CrossRef]
- Instituto para la Diversificación y Ahorro de la Energía (IDAE). Guia Profesional de Tramitación Del Autoconsumo; Instituto para la Diversificación y Ahorro de la Energía (IDAE): Madrid, Spain, 2020. [Google Scholar]
- Gamaza, R. Seis Preguntas Clave Para El Autoconsumo Solar. Available online: https://www.facua.org/es/noticia.php?Id=15149 (accessed on 17 December 2021).
Minute by Minute | Hourly Average by Month | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Obs | Mean | Std. Dev. | Min | Max | Obs | Mean | Std. Dev. | Min | Max | |
HH1 | 694,433 | 379.5 | 677.0 | 0.0 | 6900.6 | 288 | 400.9 | 304.9 | 45.2 | 1649.3 |
HH2 | 518,857 | 278.9 | 327.0 | 2.1 | 4326.7 | 288 | 281.1 | 119.2 | 130.8 | 671.9 |
HH3 | 563,495 | 641.1 | 713.7 | 4.0 | 5023.2 | 288 | 645.2 | 347.2 | 177.4 | 1919.5 |
HH4 | 684,242 | 683.8 | 613.7 | 4.4 | 5050.4 | 288 | 680.1 | 193.1 | 369.5 | 1193.4 |
Solar Comm | 442,208 | 2017.0 | 1338.3 | 39.9 | 13,282.3 | 288 | 2083.7 | 774.5 | 768.1 | 5238.2 |
Size/ Panels | Total Cost € | Potential | Price | Annual Production kWh | Kk Factor kWh/kWp | Self-Consumption % | Amortize | Savings/Year | Benefits: Trees, CO2, km Driven | |
---|---|---|---|---|---|---|---|---|---|---|
Non-Profits | ||||||||||
A | 10 | 5693 € | 4.4 kWp | 1293 €/kWp | 4500 | 1000 | 8 | |||
B | 4 * | 4290 € | 1.52 kWp | 2822 €/kWp | 2204 | 1450 | 51% | 13 | 230 € | 441 kg/year |
Small Businesses | ||||||||||
C | 10 | 5024 € | 3.4 kWp | 1477 €/kWp | 5300 | 1558 | 401,53 € | 2814 kg/year or 2.34388 km in car | ||
D | 5 | 4668 € | 1.67 kWp | 2795 €/kWp | * 2512 | 1500 * | 38.8 | 337 € ** | 290.3 kg/year or 398 trees planted | |
E | 10 | 6242 € | 5175 | 166 trees planted or 260,000 km in car | ||||||
F | 6 | 4931 € | 2.28 kWp | 2162 €/kWp | * 3420 | 1500 * | 35% | 10.24 | 428 € | 2957 kg/per year |
G | 4 | 3925 € | 1.76 kWp | 2230 €/kWp | 2187 | 1242 | 32% | 249 € |
Household | HH1 | HH2 | HH3 | HH4 | Solar Com | |||||
---|---|---|---|---|---|---|---|---|---|---|
Electr. demand | 294 kWh | 205 kWh | 471 kWh | 497 kWh | 1466 kWh | |||||
(85–645) | (165–242) | (433–510) | (436–601) | (1199–1886) | ||||||
Time res. | 1 h | 1 min | 1 h | 1 min | 1 h | 1 min | 1 h | 1 min | 1 h | 1 min |
Opt. size [kWp] | 1.04 | 0.98 | 2.36 | 2.73 | 7.39 | |||||
Inst. Cost [€] | 1252 € | 1176 € | 2835 € | 3275 € | 8871 € | |||||
Roof area [m2] * | 5.48 | 5.15 | 12.40 | 14.33 | 38.81 | |||||
SC-rate [%] | 64.8% | 45.8% | 63.7% | 51.2% | 63.3% | 51.0% | 60.8% | 51.3% | 62.3% | 58.5% |
SS rate [%] | 31.1% | 21.9% | 41.0% | 33.0% | 42.9% | 34.5% | 45.1% | 38.1% | 42.3% | 39.8% |
Benefit (1st year; €/y) | 166 € | 146 € | 160 € | 144 € | 385 € | 347 € | 436 € | 402 € | 1194 € | 1158 € |
IRR20 [%] | 13.7% | 11.2% | 14.2% | 12.1% | 14.1% | 12.1% | 13.7% | 12.2% | 14.0% | 13.3% |
NPV20 [€] | 892 € | 636 € | 893 € | 689 € | 2139 € | 1651 € | 2357 € | 1924 € | 6564 € | 6094 € |
Amortization (y) | 9 | 11 | 9 | 10 | 9 | 10 | 9 | 10 | 9 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuebben, D.; Peters, J.F. Communicating the Values and Benefits of Home Solar Prosumerism. Energies 2022, 15, 596. https://doi.org/10.3390/en15020596
Wuebben D, Peters JF. Communicating the Values and Benefits of Home Solar Prosumerism. Energies. 2022; 15(2):596. https://doi.org/10.3390/en15020596
Chicago/Turabian StyleWuebben, Daniel, and Jens F. Peters. 2022. "Communicating the Values and Benefits of Home Solar Prosumerism" Energies 15, no. 2: 596. https://doi.org/10.3390/en15020596
APA StyleWuebben, D., & Peters, J. F. (2022). Communicating the Values and Benefits of Home Solar Prosumerism. Energies, 15(2), 596. https://doi.org/10.3390/en15020596