A New SiC Planar-Gate IGBT for Injection Enhancement Effect and Low Oxide Field
Abstract
1. Introduction
2. Device Structures and Static Characteristics
3. Dynamic Characteristics
4. Proposed Fabrication Procedure
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications; Wiley: Singapore, 2014. [Google Scholar]
- Jiang, J.-Y.; Wu, T.-L.; Zhao, F.; Huang, C.-F. Numerical study of 4H-SiC UMOSFETs with split-gate and P+ shielding. Energies 2020, 13, 1122. [Google Scholar] [CrossRef]
- Wei, J.; Jiang, H.; Jiang, Q.; Chen, K.J. Proposal of a GaN/SiC hybrid field-effect transistor for power switching applications. IEEE Tran. Electron Devices 2016, 63, 2469–2473. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Udrea, F.; Lophitis, N.; Antoniou, M. Operation of ultra-high voltage (>10kV) SiC IGBTs at elevated temperatures: Benefits & constraints. In Proceedings of the ISPSD, Shanghai, China, 19–23 May 2019; pp. 175–178. [Google Scholar]
- Cooper, J.A.; Agarwal, A. SiC power-switching devices—The second electronics revolution? Proc. IEEE 2002, 90, 956–968. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Lucia, O.; Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Trans. Inductrial Electronics 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Kadavelugu, A.; Bhattacharya, S.; Ryu, S.; Brunt, V.E.; Grider, D.; Agarwal, A.; Leslie, S. Characterization of 15 kV SiC n-IGBT and its application considerations for high power converters. In Proceedings of the ECCE, Denver, CO, USA, 15–19 September 2013; pp. 2528–2535. [Google Scholar]
- Zhang, Q.; Chang, H.; Gomez, M.; Bui, C.; Hanna, E. 10 kV trench gate IGBTs on 4H-SiC. In Proceedings of the ISPSD, Santa Barbara, CA, USA, 23–26 May 2005; pp. 303–306. [Google Scholar]
- Vechalapu, K.; Bhattacharya, S.; Van Brunt, E.; Ryu, S.; Grider, D.; Palmour, J.W. Comparative evaluation of 15-kV SiC MOSFET and 15-kV SiC IGBT for medium-voltage converter under the same dv/dt conditions. IEEE J. Emerg. Sel. Topics Power Electron. 2017, 5, 469–489. [Google Scholar] [CrossRef]
- Ryu, S.; Capell, C.; Jonas, C.; Cheng, L.; O’Loughlin, M.; Burk, A.; Agarwal, A.; Palmour, J.; Hefner, A. Ultra high voltage (>12 kV), high performance 4H-SiC IGBTs. In Proceedings of the ISPSD, Bruges, Belgium, 3–7 June 2012; pp. 257–260. [Google Scholar]
- Van Brunt, E.; Cheng, L.; O’Loughlin, M.J.; Richmond, J.; Pala, V.; Palmour, J.; Tipton, C.W.; Scozzie, C. 27 kV, 20 A 4H-SiC n-IGBTs. Mater. Sci. Forum 2015, 821–823, 847–850. [Google Scholar] [CrossRef]
- Yang, X.; Tao, Y.; Yang, T.; Huang, R.; Song, B. Fabrication of 4H-SiC n-channel IGBTs with ultra high blocking voltage. J. Semicond. 2018, 39, 34005. [Google Scholar] [CrossRef]
- Mihaila, A.; Knoll, L.; Bianda, E.; Bellini, M.; Wirths, S.; Alfieri, G.; Kranz, L.; Canales, F.; Rahimo, M. The current status and future prospects of SiC high voltage technology. In Proceedings of the IEDM Technical Digest, San Francisco, CA, USA, 1–5 December 2018; pp. 440–443. [Google Scholar]
- Linder, S. Power Electronics; EPFL Press: Lausanne, Switzerland, 2006. [Google Scholar]
- Kitagawa, M.; Omura, I.; Hasegawa, S.; Inoue, T.; Nakagawa, A. A 4500 V injection enhanced insulated gate bipolar transistor (IEGT) operating in a mode similar to a thyristor. In Proceedings of the IEDM Technical Digest, Washington, DC, USA, 5–8 December 1993; pp. 679–682. [Google Scholar]
- Mori, M.; Oyama, K.; Kohno, Y.; Sakano, J.; Uruno, J.; Ishizaka, K.; Kawase, D. A trench-gate high-conductivity IGBT (HiGT) with short-circuit capability. IEEE Trans. Electron Devices 2007, 54, 2011–2016. [Google Scholar] [CrossRef]
- Thapar, N.; Baliga, B.J. An experimental evaluation of the on-state performance of trench IGBT designs. Solid-State Electron. 1998, 42, 771–776. [Google Scholar] [CrossRef]
- Harada, S.; Kobayashi, Y.; Ariyoshi, K.; Kojima, T.; Senzaki, J.; Tanaka, Y.; Okumura, H. 3.3kV-class 4H-SiC MeV-implanted UMOSFET with reduced gate oxide field. IEEE Electron Device Lett. 2016, 3, 314–316. [Google Scholar] [CrossRef]
- Hu, S.; Huang, Y.; Liu, T.; Guo, J.; Wang, J.; Luo, J. A comparative study of a deep-trench superjunction SiC VDMOS device. J. Comput. Electron. 2019, 18, 553–560. [Google Scholar] [CrossRef]
- Sun, J.; Wei, J.; Zheng, Z.; Wang, Y.; Chen, K.J. Short circuit capability and short circuit induced VTH instability of a 1.2-kV SiC power MOSFET. IEEE J. Emerg. Sel. Topics Power Electron. 2019, 7, 1539–1546. [Google Scholar] [CrossRef]
- Uchid, K.; Hiyoshi, T.; Nishiguchi, T.; Yamamoto, H.; Matsukawa, S.; Furumai, M.; Mikamura, Y. The influence of surface pit shape on 4H-SiC MOSFETs reliability under high temperature bias tests. Mat. Sci. Forum 2016, 858, 840–843. [Google Scholar] [CrossRef]
- Li, Y.; Cooper, J.A.J.; Capano, M.A. High-voltage (3 kV) UMOSFETs in 4H-SiC. IEEE Transctions Electron Devices 2002, 49, 972–975. [Google Scholar] [CrossRef]
- Jiang, H.; Wei, J.; Dai, X.; Ke, M.; Deviny, I.; Mawby, P. SiC trench MOSFET with shielded Fin-shaped gate to reduce oxide field and switching loss. IEEE Electron Device Lett. 2016, 37, 1324–1327. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, M.; Jiang, H.; Li, B.; Chen, K.J. Gate structure design of SiC trench IGBTs for injection-enhancement effect. IEEE Trans. Electron Devices 2019, 66, 3034–3039. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, M.; Jiang, H.; To, S.; Kim, S.; Kim, J.; Chen, K.J. SiC trench IGBT with diode-clamped p-shield for oxide protection and enhanced conductivity modulation. In Proceedings of the ISPSD, Chicago, IL, USA, 13–17 May 2018; pp. 411–414. [Google Scholar]
- Feng, H.; Yang, W.; Onozawa, Y.; Yoshimura, T.; Tamenori, A.; Sin, J.K.O. A new fin p-body insulated gate bipolar transistor with low miller capacitance. IEEE Electron Device Lett. 2015, 36, 591–593. [Google Scholar] [CrossRef]
- Watanabe, S.; Mori, M.; Arai, T.; Ishibashi, K.; Toyoda, Y.; Oda, T.; Harada, T.; Saito, K. 1.7kV trench IGBT with deep and separate floating p-layer designed for low loss, low EMI noise, and high reliability. In Proceedings of the ISPSD, San Diego, CA, USA, 23–26 May 2011; pp. 48–51. [Google Scholar]
- Onozawa, Y.; Nakano, H.; Otsuki, M.; Yoshikawa, K.; Miyasaka, T.; Seki, Y. Development of the next generation 1200V trench-gate FSIGBT featuring lower EMI noise and lower switching loss. In Proceedings of the ISPSD, Jeju, Korea, 27–31 May 2007; pp. 13–16. [Google Scholar]
- Zerarka, M.; Austin, P.; Bafleur, M. Comparative study of sensitive volume and triggering criteria of SEB in 600 V planar and trench IGBTs. Microelectron. Reliab. 2011, 51, 1990–1994. [Google Scholar] [CrossRef]
- Li, X.; Tan, B.; Huang, A.Q.; Zhang, B.; Zhang, Y.; Deng, X.; Li, Z.; She, X.; Wang, F.; Huang, X. Impact of termination region on switching loss for SiC MOSFET. IEEE Tran. Electron Devices 2019, 66, 1026–1031. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, J.; Zhou, X.; Jiang, H.; Li, B.; Chen, K.J. Simulation study of a power MOSFET with built-in channel diode for enhanced reverse recovery performance. IEEE Electron Device Lett. 2019, 1, 79–82. [Google Scholar] [CrossRef]
- Harada, S.; Kato, M.; Kojima, T.; Ariyoshi, K.; Tanaka, Y.; Okumura, H. Determination of optimum structure of 4H-SiC trench MOSFET. In Proceedings of the ISPSD, Bruges, Belgium, 3–7 June 2012; pp. 253–256. [Google Scholar]
- Sui, Y.; Tsuji, T.; Cooper, J.A., Jr. On-state characteristics of SiC power UMOSFETs on 115-um drift layers. IEEE Electron Device Lett. 2005, 26, 255–257. [Google Scholar] [CrossRef]
- Singh, R. Reliability and performance limitations in SiC power devices. Microelectron. Reliab. 2006, 46, 713–730. [Google Scholar] [CrossRef]
- Jahdi, S.; Alatise, O.; Ortiz-Gonzalez, J.; Gammon, P.; Ran, L.; Mawby, P. Investigation of parasitic turn-on in silicon IGBT and silicon carbide MOSFET devices: A technology evaluation. In Proceedings of the 2015 17th European Conference on Power Electronics and Applications, Geneva, Switzerland, 8–10 September 2015; pp. 1–8. [Google Scholar]
- Wei, J.; Zhang, M.; Jiang, H.; Wang, H.; Chen, K.J. Dynamic degradation in SiC trench MOSFET with a floating p-shield revealed with numerical simulations. IEEE Trans. Electron Devices 2017, 64, 2592–2598. [Google Scholar] [CrossRef]
- Kagawa, Y.; Fujiwara, N.; Sugawara, K.; Tanaka, R.; Fukui, Y.; Yamamoto, Y.; Miura, N.; Imaizumi, M.; Nakata, S.; Yamakawa, S. 4H-SiC trench MOSFET with bottom oxide protection. Mater. Sci. Forum 2014, 778–780, 919–922. [Google Scholar] [CrossRef]
- Wei, J.; Xie, R.; Xu, H.; Wang, H.; Wang, Y.; Hua, M.; Zhong, K.; Tang, G.; Zhang, M.; Chen, K.J. Charge storage mechanism of drain induced dynamic threshold voltage shift in p-GaN gate HEMTs. IEEE Electron Device Lett. 2019, 40, 526–529. [Google Scholar] [CrossRef]
- Oyama, K.; Kohno, Y.; Sakano, J.; Uruno, J.; Ishizaka, K.; Kawase, D.; Mori, M. Novel 600-V trench high-conductivity IGBT (trench HiGT) with short-circuit capability. In Proceedings of the ISPSD, Osaka, Japan, 7 June 2001; pp. 417–420. [Google Scholar]
- Antoniou, M.; Lophitis, N.; Bauer, F.; Nistor, I.; Bellini, M.; Rahimo, M.; Amaratunga, G.; Udrea, F. Novel approach toward plasma enhancement in trench-insulated gate bipolar transistors. IEEE Electron Device Lett. 2015, 36, 823–825. [Google Scholar] [CrossRef]
- Yonezawa, Y.; Mizushima, T.; Takenaka, K.; Fujisawa, H.; Deguchi, T.; Kato, T.; Harada, S.; Tanaka, Y.; Okamoto, D.; Sometani, M.; et al. Device performance and switching characteristics of 16 kV ultrahigh-voltage SiC flip-type n-channel IE-IGBTs. Mater. Sci. Forum 2015, 821–823, 842–846. [Google Scholar] [CrossRef]
- Mikamura, Y.; Hiratsuka, K.; Tsuno, T.; Michikoshi, H.; Tanaka, S.; Masuda, T.; Wada, K.; Horii, T.; Genba, J.; Hiyoshi, T.; et al. Novel designed SiC devices for high power and high efficiency systems. IEEE Trans. Electron Devices. 2015, 62, 382–389. [Google Scholar] [CrossRef]
- Ghandi, R.; Bolotnikov, A.; Lilienfeld, D.; Kennerly, S.; Ravisekhar, R. 3kV SiC charge-balanced diodes breaking unipolar limit. In Proceedings of the ISPSD, Shanghai, China, 19–23 May 2019; pp. 179–182. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
Doping of n-drift | 2.5 × 1014 | cm−3 |
Thickness of n-drift | 180 | µm |
Gate oxide thickness | 50 | nm |
Channel mobility | 30 | cm2/V-s |
Channel length | 1 | µm |
Doping of JFET | 2 × 1016 | cm−3 |
Doping of p-shield | 1 × 1018 | cm−3 |
Thickness of p-shield | 1 | µm |
Doping of CSL | 2 × 1016 | cm−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Li, B.; Zheng, Z.; Tang, X.; Wei, J. A New SiC Planar-Gate IGBT for Injection Enhancement Effect and Low Oxide Field. Energies 2021, 14, 82. https://doi.org/10.3390/en14010082
Zhang M, Li B, Zheng Z, Tang X, Wei J. A New SiC Planar-Gate IGBT for Injection Enhancement Effect and Low Oxide Field. Energies. 2021; 14(1):82. https://doi.org/10.3390/en14010082
Chicago/Turabian StyleZhang, Meng, Baikui Li, Zheyang Zheng, Xi Tang, and Jin Wei. 2021. "A New SiC Planar-Gate IGBT for Injection Enhancement Effect and Low Oxide Field" Energies 14, no. 1: 82. https://doi.org/10.3390/en14010082
APA StyleZhang, M., Li, B., Zheng, Z., Tang, X., & Wei, J. (2021). A New SiC Planar-Gate IGBT for Injection Enhancement Effect and Low Oxide Field. Energies, 14(1), 82. https://doi.org/10.3390/en14010082