Vehicle Electrification: New Challenges and Opportunities for Smart Grids
Abstract
:1. Introduction
2. EV Battery Chargers: Principle of Operation
2.1. On-Board and Off-Board Systems
2.2. Wireless Charging Systems
2.3. EV in Smart Grids: Coordination and Power Quality
3. Opportunities for Smart Grids
3.1. On-Board EV Battery Charger
3.1.1. Grid-to-Vehicle (G2V)
3.1.2. Vehicle-to-Grid (V2G)
3.1.3. Vehicle-to-Load (V2L)–Voltage Source
3.1.4. Vehicle-to-Home (V2H)–Uninterruptible Power Supply
3.2. Off-Board EV Battery Charger
3.2.1. Grid-to-Vehicle and Vehicle-to-Grid
3.2.2. Power Quality Compensator
3.2.3. Unified Operation of Power Quality Compensator with Renewables
3.2.4. Unified Operation of Power Quality Compensator, Renewables and Energy Storage Systems
4. Laboratory Prototypes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bose, B.K. Global Warming—Energy, Environmental Pollution, and the Impact of Power Electronics. IEEE Ind. Electron. Mag. 2010, 4, 6–17. [Google Scholar] [CrossRef]
- Bozchalui, M.C.; Cañizares, C.A.; Bhattacharya, K. Optimal Energy Management of Greenhouses in Smart Grids. IEEE Trans. Smart Grid 2015, 6, 827–835. [Google Scholar] [CrossRef]
- Amin, S.M.; Giacomoni, A.M. Giacomoni, Smart Grid—Safe, Secure, Self-Healing. IEEE Power Energy Mag. 2012, 10, 33–40. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart Grid and Smart Homes—Key Players and Pilot Projects. IEEE Ind. Electron. Mag. 2012, 6, 18–34. [Google Scholar] [CrossRef]
- Moslehi, K.; Kumar, R. A Reliability Perspective of the Smart Grid. IEEE Trans. Smart Grid 2010, 1, 57–64. [Google Scholar] [CrossRef]
- Galus, M.D.; Vayá, M.G.; Krause, T.; Andersson, G. The Role of Electric Vehicles in Smart Grids. WIREs Energy Environ. 2013, 2, 384–400. [Google Scholar] [CrossRef]
- Li, D.; Jayaweera, S.K. Distributed Smart-Home Decision-Making in a Hierarchical Interactive Smart Grid Architecture. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 75–84. [Google Scholar] [CrossRef]
- Hashmi, M.H.; Hänninen, S.; Mäki, K. Survey of Smart Grid Concepts, Architectures, and Technological Demonstrations Worldwide. In Proceedings of the IEEE PES Conference on Innovative Smart Grid Technologies Latin America, Medellin, Colombia, 19–21 October 2011; pp. 1–7. [Google Scholar]
- Yu, X.; Cecati, C.; Dillon, T.; Simoes, M.G. The New Frontier of Smart Grids: An Industrial Electronics Perspective. IEEE Ind. Electron. Mag. 2011, 5, 49–63. [Google Scholar] [CrossRef]
- Vojdani, A. Smart Integration: The Smart Grid Needs Infrastructure That is Dynamic and Flexible. IEEE Power Energy Mag. 2008, 6, 71–79. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart Grid Technologies: Communication Technologies and Standards. IEEE Trans. Ind. Inform. 2011, 7, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Chen, J.; Zhu, L.; Zhang, J.; He, Y. A Key Management Scheme for Secure Communications of Advanced Metering Infrastructure in Smart Grid. IEEE Trans. Ind. Electron. 2013, 60, 4746–4756. [Google Scholar] [CrossRef]
- Meliopoulos, A.S.; Cokkinides, G.; Huang, R.; Farantatos, E.; Choi, S.; Lee, Y.; Yu, X. Smart Grid Technologies for Autonomous Operation and Control. IEEE Trans. Smart Grid 2011, 2, 1–10. [Google Scholar] [CrossRef]
- Yan, B.; Luh, P.B.; Warner, G.; Zhang, P. Operation and Design Optimization of Microgrids With Renewables. IEEE Trans. Autom. Sci. Eng. 2017, 14, 573–585. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Guerrero, J.M. Smart Grid and Renewable Energy Systems. In Proceedings of the ICEMS International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–10. [Google Scholar]
- Ackermann, T.; Carlini, E.M.; Ernst, B.; Groome, F.; Orths, A.; O’Sullivan, J.; de la Torre Rodriguez, M.; Silva, V. Integrating Variable Renewables in Europe: Current Status and Recent Extreme Events. IEEE Power Energy Mag. 2015, 13, 67–77. [Google Scholar] [CrossRef]
- Bragard, M.; Soltau, N.; Thomas, S.; De Doncker, R.W. The Balance of Renewable Sources and User Demands in Grids: Power Electronics for Modular Battery Energy Storage Systems. IEEE Trans. Power Electron. 2010, 25, 3049–3056. [Google Scholar] [CrossRef]
- Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy Storage for Mitigating the Variability of Renewable Electricity Sources: An Updated Review. Energy Sustain. Dev. 2010, 14, 302–314. [Google Scholar] [CrossRef]
- Hernandez, J.E.; Kreikebaum, F.; Divan, D. Flexible Electric Vehicle (EV) Charging to Meet Renewable Portfolio Standard (RPS) Mandates and Minimize Green House Gas Emissions. In Proceedings of the IEEE ECCE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 4270–4277. [Google Scholar]
- Alam, M.R.; Reaz, M.B.I.; Ali, M.A.M. A Review of Smart Homes—Past, Present, and Future. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2012, 42, 1190–1203. [Google Scholar] [CrossRef]
- Erickson, L.E.; Robinson, J.; Brase, G.; Cutsor, J. Solar Powered Charging Infrastructure for Electric Vehicles: A Sustainable Development, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Raghavan, S.S.; Khaligh, A. Electrification Potential Factor: Energy-Based Value Proposition Analysis of Plug-In Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2012, 61, 1052–1059. [Google Scholar] [CrossRef]
- Saber, A.Y.; Venayagamoorthy, G.K. Plug-in Vehicles and Renewable Energy Sources for Cost and Emission Reductions. IEEE Trans. Ind. Electron. 2011, 58, 1229–1238. [Google Scholar] [CrossRef]
- Martínezij, I.J.; Garcia-Villalobos, J.; Zamora, I.; Eguia, P. Energy Management of Micro Renewable Energy Source and Electric Vehicles at Home Level. J. Mod. Power Syst. Clean Energy 2017, 5, 979–990. [Google Scholar]
- Lopes, J.P.; Almeida, P.M.; Silva, A.M.; Soares, F.J. Smart Charging Strategies for Electric Vehicles: Enhancing Grid Performance and Maximizing the Use of Variable Renewable Energy Resources. In Proceedings of the EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Stavanger, Norway, 13–16 May 2009; pp. 1–11. [Google Scholar]
- Saber, A.Y.; Venayagamoorthy, G.K. Resource Scheduling Under Uncertainty in a Smart Grid with Renewables and Plug-in Vehicles. IEEE Syst. J. 2012, 6, 103–109. [Google Scholar] [CrossRef]
- Robalino, D.M.; Kumar, G.; Uzoechi, L.O.; Chukwu, U.C.; Mahajan, S.M. Design of a Docking Station for Solar Charged Electric and Fuel Cell Vehicles. In Proceedings of the IEEE International Conference on Clean Electrical Power, Capri, Italy, 9–11 June 2009; pp. 655–660. [Google Scholar]
- Vithayasrichareon, P.; Mills, G.; MacGill, I.F. Impact of Electric Vehicles and Solar PV on Future Generation Portfolio Investment. IEEE Trans. Sustain. Energy 2015, 6, 899–908. [Google Scholar] [CrossRef]
- Tushar, W.; Yuen, C.; Huang, S.; Smith, D.B.; Poor, H.V. Vincent Poor, Cost Minimization of Charging Stations With Photovoltaics: An Approach with EV Classification. IEEE Trans. Intell. Transp. Syst. 2016, 17, 156–169. [Google Scholar] [CrossRef]
- Monteiro, V.; Pinto, J.G.; Afonso, J.L. Experimental Validation of a Three-Port Integrated Topology to Interface Electric Vehicles and Renewables with the Electrical Grid. IEEE Trans. Ind. Inform. 2018, 14, 2364–2374. [Google Scholar] [CrossRef]
- Pedrasa, M.A.; Spooner, T.D.; MacGill, I.F. Coordinated Scheduling of Residential Distributed Energy Resources to Optimize Smart Home Energy Services. IEEE Trans. Smart Grid 2010, 1, 134–143. [Google Scholar] [CrossRef]
- Tsui, K.M.; Chan, S.C. Demand Response Optimization for Smart Home Scheduling Under Real-Time Pricing. IEEE Trans. Smart Grid 2012, 3, 1812–1821. [Google Scholar] [CrossRef]
- Monteiro, V.D.; Pinto, J.G.; Exposto, B.F.; Ferreira, J.C.; Afonso, J.L. Smart Charging Management for Electric Vehicle Battery Chargers. In Proceedings of the IEEE VPPC Vehicle Power and Propulsion Conference, Coimbra, Portugal, 27–30 October 2014; pp. 1–5. [Google Scholar]
- Zhang, T.; Chen, W.; Han, Z.; Cao, Z. Charging Scheduling of Electric VehiclesWith Local Renewable Energy Under Uncertain Electric Vehicle Arrival and Grid Power Price. IEEE Trans. Veh. Technol. 2014, 63, 2600–2612. [Google Scholar] [CrossRef]
- Tushar, M.H.; Zeineddine, A.W.; Assi, C. Demand-Side Management by Regulating Charging and Discharging of the EV, ESS, and Utilizing Renewable Energy. IEEE Trans. Ind. Inform. 2018, 14, 117–126. [Google Scholar] [CrossRef]
- Boulanger, A.G.; Chu, A.C.; Maxx, S.; Waltz, D.L. Vehicle Electrification: Status and Issues. Proc. IEEE 2011, 99, 1116–1138. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Oviedo, R.M.; Gormus, S.; Kulkarni, P. The Reign of EVs? An Economic Analysis from Consumer’s Perspective. IEEE Electrif. Mag. 2014, 2, 61–71. [Google Scholar] [CrossRef]
- Dyke, K.J.; Schofield, N.; Barnes, M. The Impact of Transport Electrification on Electrical Networks. IEEE Trans. Ind. Electron. 2010, 57, 3917–3926. [Google Scholar] [CrossRef]
- Su, W.; Eichi, H.; Zeng, W.; Chow, M.Y. A Survey on the Electrification of Transportation in a Smart Grid Environment. IEEE Trans. Ind. Electron. 2012, 8, 1–10. [Google Scholar] [CrossRef]
- Li, S.; Mi, C.C. Wireless Power Transfer for Electric Vehicle Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. [Google Scholar]
- Musavi, F.; Edington, M.; Eberle, W. Wireless Power Transfer: A Survey of EV Battery Charging Technologies. In Proceedings of the IEEE ECCE Energy Conversion Congress and Exposition, Raleigh, NC, USA, 15–20 September 2012; pp. 1804–1810. [Google Scholar]
- Wang, S.; Dorrell, D. Review of Wireless Charging Coupler for Electric Vehicles. In Proceedings of the IEEE IECON Annual Conference of the Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 7272–7277. [Google Scholar]
- Ching, T.W.; Wong, Y.S. Review of Wireless Charging Technologies for Electric Vehicles. In Proceedings of the IEEE PESA International Conference on Power Electronics Systems and Applications, Hong Kong, China, 11–13 December 2013; pp. 1–4. [Google Scholar]
- Salmasi, F.R. Control Strategies for Hybrid Electric Vehicles: Evolution, Classification, Comparison, and Future Trends. IEEE Trans. Veh. Technol. 2007, 56, 2393–2404. [Google Scholar] [CrossRef]
- Lopes, J.A.; Soares, F.J.; Almeida, P.M. Rocha Almeida, Integration of Electric Vehicles in the Electric Power Systems. Proc. IEEE 2011, 99, 168–183. [Google Scholar] [CrossRef]
- Lam, A.Y.; Leung, K.C.; Li, V.O. Capacity Estimation for Vehicle-to-Grid Frequency Regulation Services With Smart Charging Mechanism. IEEE Trans. Smart Grid 2016, 7, 156–166. [Google Scholar] [CrossRef]
- Zipperer, A.; Aloise-Young, P.A.; Suryanarayanan, S.; Roche, R.; Earle, L.; Christensen, D.; Bauleo, P.; Zimmerle, D. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior. Proc. IEEE 2013, 101, 2397–2408. [Google Scholar] [CrossRef]
- Tushar, M.H.; Assi, C.; Maier, M.; Uddin, M.F. Smart Microgrids: Optimal Joint Scheduling for Electric Vehicles and Home Appliances. IEEE Trans. Smart Grid 2014, 5, 239–250. [Google Scholar] [CrossRef]
- Yilmaz, M.; Krein, P.T. Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces. IEEE Trans. Power Electron. 2013, 28, 5673–5689. [Google Scholar] [CrossRef]
- Lund, H.; Kempton, W. Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 2008, 36, 3578–3587. [Google Scholar] [CrossRef]
- Gao, S.; Chau, K.T.; Liu, C.; Wu, D.; Chan, C.C. Chan, Integrated Energy Management of Plug-in Electric Vehicles in Power Grid With Renewables. IEEE Trans. Veh. Technol. 2014, 63, 3019–3027. [Google Scholar] [CrossRef]
- Monteiro, V.; Carmo, J.P.; Pinto, J.G.; Afonso, J.L. A Flexible Infrastructure for Dynamic Power Control of Electric Vehicle Battery Chargers. IEEE Trans. Veh. Technol. 2016, 65, 4535–4547. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.C.; Souza, I.D.; Ferreira, A.A.; Barbosa, P.G.; Braga, H.A. Simultaneous Active Power Filter and G2V (or V2G) Operation of EV On-Board Power Electronics. In Proceedings of the IEEE IECON Industrial Electronics Conference, Vienna, Austria, 10–13 November 2013; pp. 4684–4689. [Google Scholar]
- Monteiro, V.; Pinto, J.G.; Afonso, J.L. Operation Modes for the Electric Vehicle in Smart Grids and Smart Homes: Present and Proposed Modes. IEEE Trans. Veh. Tech. 2016, 65, 1007–1020. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, W.; Su, M.; Li, X.; Wang, H.; Yang, J. A Unified Modeling and Control of a Multi-Functional Current Source-Typed Converter for V2G Application. Electr. Power Syst. Res. 2014, 106, 12–20. [Google Scholar] [CrossRef]
- Buja, G.; Bertoluzzo, M.; Fontana, C. Reactive Power Compensation Capabilities of V2G-Enabled Electric Vehicles. IEEE Trans. Power Electon. 2017, 32, 9447–9459. [Google Scholar] [CrossRef]
- An, L.U.; Qianming, X.U.; Fujun, M.A.; Yandong, C.H. Overview of Power Quality Analysis and Control Technology for the Smart Grid. J. Mod. Power Syst. Clean Energy 2016, 4, 1–9. [Google Scholar]
- Traube, J.; Lu, F.; Maksimovic, D. Photovoltaic Power System with Integrated Electric Vehicle DC Charger and Enhanced Grid Support. In Proceedings of the EPE/PEMC International Power Electronics and Motion Control Conference, Novi Sad, Serbia, 4–6 September 2012; pp. 1–5. [Google Scholar]
- Masoum, A.S.; Deilami, S.; Moses, P.S.; Abu-Siada, A. Ahmed Abu-Siada, Impacts of Battery Charging Rates of Plug-in Electric Vehicle on Smart Grid Distribution Systems. In Proceedings of the IEEE ISGT Innovative Smart Grid Technologies Conference Europe, Gothenberg, Sweden, 11–13 October 2010; pp. 1–6. [Google Scholar]
- Boynuegri, A.R.; Uzunoglu, M.; Erdinc, O.; Gokalp, E. A new perspective in grid connection of electric vehicles: Different operating modes for elimination of energy quality problems. Appl. Energy 2014, 132, 435–451. [Google Scholar] [CrossRef]
- Green Car Congress. Nissan to launch the ‘LEAF to Home’ V2Hpower Supply System with Nichicon ‘EV Power Station’ in June. Available online: http://www.greencarcongress.com/2012/05/leafvsh-20120530.html (accessed on 30 May 2012).
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, V.; Afonso, J.A.; Ferreira, J.C.; Afonso, J.L. Vehicle Electrification: New Challenges and Opportunities for Smart Grids. Energies 2019, 12, 118. https://doi.org/10.3390/en12010118
Monteiro V, Afonso JA, Ferreira JC, Afonso JL. Vehicle Electrification: New Challenges and Opportunities for Smart Grids. Energies. 2019; 12(1):118. https://doi.org/10.3390/en12010118
Chicago/Turabian StyleMonteiro, Vitor, Jose A. Afonso, Joao C. Ferreira, and Joao L. Afonso. 2019. "Vehicle Electrification: New Challenges and Opportunities for Smart Grids" Energies 12, no. 1: 118. https://doi.org/10.3390/en12010118
APA StyleMonteiro, V., Afonso, J. A., Ferreira, J. C., & Afonso, J. L. (2019). Vehicle Electrification: New Challenges and Opportunities for Smart Grids. Energies, 12(1), 118. https://doi.org/10.3390/en12010118