Next Article in Journal
Cyclic CH4 Injection for Enhanced Oil Recovery in the Eagle Ford Shale Reservoirs
Previous Article in Journal
A Wide Load Current and Voltage Range Switched Capacitor DC–DC Converter with Load Dependent Configurability for Dynamic Voltage Implementation in Miniature Sensors
Article Menu

Export Article

Open AccessArticle
Energies 2018, 11(11), 3093; https://doi.org/10.3390/en11113093

Performance of Wood-Based Panels Integrated with a Bio-Based Phase Change Material: A Full-Scale Experiment in a Cold Climate with Timber-Frame Huts

1
Faculty of forestry, University LAVAL, Quebec City, QC G1V 0A6, Canada
2
Trefle Department, University of Bordeaux, 33076 Bordeaux, France
*
Author to whom correspondence should be addressed.
Received: 10 October 2018 / Revised: 25 October 2018 / Accepted: 7 November 2018 / Published: 9 November 2018
(This article belongs to the Section Energy Storage and Application)
Full-Text   |   PDF [2643 KB, uploaded 9 November 2018]   |  

Abstract

The relatively low thermal mass of timber frame buildings is a limiting factor for their energy efficiency and for the thermal comfort. The aim of this study is to assess the performance of wood-based wallboards integrated with PCM (Phase Change Materials) in a cold climate (Québec, Canada), from the heating season to the summer. Two timber-frame test huts, of 2 × 2.5 × 3 m, were built following the National Building Code of Canada and placed in the LAVAL University Campus. The first hut was equipped with wood-based panels integrated with the commercial bio-based PCM Puretemp®23 with a 23 °C melting point. The second hut was equipped with standard interior wood panels. Large double glaze windows were installed facing south. Dry indoor air temperatures were recorded for both huts and for the heating season, heating consumptions were monitored. The behaviour of the two huts was compared and PCM panels efficiency was evaluated over several seasons. A reduction of heating consumption was observed for cold months. For the heating season, panels were found to be more efficient as the months were getting milder. By gathering solar energy during the day, they allowed to reduce the test-hut heating consumption, by a maximum of 41% in May. In summer, the PCM panels had a positive impact in order to reduce the hut overheating. However their efficiency was found limited by a poor ability of discharge during the night. The solidification of the PCM was often impossible to achieve due to unsuitable night conditions. The results presented in this study will improve the knowledge concerning wood/PCM composites performance and concerning PCMs issues in cold climates. This study exposes the potential of wood-based panels integrated with PCM to achieve winter energy savings and enhance the summer thermal comfort of a timber-frame building, for a cold Canadian climate. View Full-Text
Keywords: phase change materials; PCM; full-scale; huts; thermal energy storage; bio-based phase change materials; PCM; full-scale; huts; thermal energy storage; bio-based
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Mathis, D.; Blanchet, P.; Lagière, P.; Landry, V. Performance of Wood-Based Panels Integrated with a Bio-Based Phase Change Material: A Full-Scale Experiment in a Cold Climate with Timber-Frame Huts. Energies 2018, 11, 3093.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top