# Noncontact Measurement and Detection of Instantaneous Seismic Attributes Based on Complementary Ensemble Empirical Mode Decomposition

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Proposed Method

#### 2.1. Mode Mixing Problem

#### 2.2. The Decomposed Results of CEEMD

#### 2.3. Anti-Noise Ability Test of CEEMD

- (1)
- The results of CEEMD decomposition are closer to actual waveform components while the results of EMD decomposition deviate from actual signals. The results show that CEEMD could effectively solve mode mixing problems.
- (2)
- CEEMD could correctly and accurately display the positions of high frequency transient signals. CEEMD has a better anti-noise ability. It could guarantee the decomposition effects at higher noise levels.

#### 2.4. Instantaneous Seismic Attributes

## 3. The Decomposed Results of Synthetic Seismic Record

## 4. Case Study

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Partyka, G.; Gridley, J.; Lopez, J. Interpretational applications of spectral decomposition in reservoir characterization. Lead. Edge
**1999**, 18, 353–360. [Google Scholar] [CrossRef] - Liu, W.; Cao, S.Y.; Chen, Y.K. Applications of variational mode decomposition in seismic time-frequency analysis. Geophysics
**2016**, 81, V365–V378. [Google Scholar] [CrossRef] - Honório, B.C.Z.; de Matos, M.C.; Vidal, A.C. Progress on empirical mode decomposition-based techniques and its impacts on seismic attribute analysis. Interpretation
**2017**, 5, SC17–SC28. [Google Scholar] - Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
**1988**, 454, 903–995. [Google Scholar] [CrossRef] - Wang, Y.Q.; Peng, Z.M.; He, Y.M. Instantaneous attributes analysis of seismic signals using improved HHT. J. Earth Sci.
**2015**, 26, 515–521. [Google Scholar] [CrossRef] - Huang, N.E.; Long, S.R.; Shen, Z. The mechanism for frequency down shift in nonlinear wave evolution. Adv. Appl. Mech.
**1996**, 32. [Google Scholar] [CrossRef] - Huang, N.E.; Shen, Z.; Long, S.R. A new view of nonlinear water waves: The Hilbert spectrum. Annu. Rev. Fluid Mech.
**1999**, 31, 417–457. [Google Scholar] [CrossRef] - Cai, J.H.; Tang, J.T.; Hua, X.R.; Gong, Y.R. An analysis method for magnetotelluric data based on the Hilbert-Huang Transform. Explor. Geophys.
**2009**, 40, 197–205. [Google Scholar] [CrossRef] - Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal.
**2009**, 1, 1–41. [Google Scholar] [CrossRef] - Battista, B.M.; Knapp, C.; McGee, T.; Goebel, V. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics
**2007**, 72, H29–H37. [Google Scholar] [CrossRef] - Bekara, M.; Van der Baan, M. Random and coherent noise attenuation by empirical mode decomposition. Geophysics
**2009**, 74, V89–V98. [Google Scholar] [CrossRef] - Huang, Y.P.; Geng, J.H.; Zhong, G.F.; Guo, T.L.; Pu, Y.; Ding, K.Y.; Ma, J.Q. Seismic attribute extraction based on HHT and its application in a marine carbonate area. Appl. Geophys.
**2011**, 8, 125–133. [Google Scholar] [CrossRef] - Zhou, Y.H.; Chen, W.C.; Gao, J.H.; He, Y.Q. Application of Hilbert–Huang transform based instantaneous frequency to seismic reflection data. J. Appl. Geophys.
**2012**, 82, 68–74. [Google Scholar] [CrossRef] - Han, J.; van der Baan, M. Empirical mode decomposition for seismic time-frequency analysis. Geophysics
**2013**, 78, O9–O19. [Google Scholar] [CrossRef] - Xue, Y.J.; Cao, J.X.; Tian, R.F. A comparative study on hydrocarbon detection using three EMD-based time–frequency analysis methods. J. Appl. Geophys.
**2013**, 89, 108–115. [Google Scholar] [CrossRef] - Xue, Y.J.; Cao, J.X.; Du, H.K.; Zhang, G.L.; Yao, Y. Does mode mixing matter in EMD-based highlight volume methods for hydrocarbon detection? Experimental evidence. J. Appl. Geophys.
**2016**, 132, 193–210. [Google Scholar] [CrossRef] - Gairola, G.S.; Chandrasekhar, E. Heterogeneity analysis of geophysical well-log data using Hilbert–Huang transform. Phys. A Stat. Mech. Appl.
**2017**, 478, 131–142. [Google Scholar] [CrossRef] - Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal.
**2010**, 2, 135–156. [Google Scholar] [CrossRef] - Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomed. Signal Process. Control
**2014**, 14, 19–29. [Google Scholar] [CrossRef] - Liu, S.; Han, L.G. Study of seismic spectrum decomposition based on CEEMD. Glob. Geol.
**2014**, 17, 120–126. [Google Scholar] - Kwietniak, A.; Cichostępski, K.; Kasperska, M. Spectral Decomposition Using the CEEMD Method: A Case Study from the Carpathian Foredeep. Acta Geophys.
**2016**, 64, 1525–1541. [Google Scholar] [CrossRef] - Li, M.J.; Wang, H.Q.; Tang, G.; Yuan, H.F.; Yang, Y. An improved method based on CEEMD for fault diagnosis of rolling bearing. Adv. Mech. Eng.
**2014**, 6, 676205. [Google Scholar] [CrossRef] - Li, F.Y.; Zhang, B.; Zhai, R.; Zhou, H.L.; Marfurt, K.J. Depositional sequence characterization based on seismic variational mode decomposition. Interpretation
**2017**, 5, SE97–SE106. [Google Scholar] [CrossRef] - Li, F.Y.; Zhang, B.; Verma, S.; Marfurt, K.J. Seismic signal denoising using thresholded variational mode decomposition. Explor. Geophys.
**2017**. [Google Scholar] [CrossRef] - Chopra, S.; Marfurt, K.J. Seismic attributes—A historical perspective. Geophysics
**2005**, 70, 3SO–28SO. [Google Scholar] [CrossRef] - Chopra, S.; Marfurt, K.J. Seismic Attributes for Prospect Identification and Reservoir Characterization; Society of Exploration Geophysicists and European Association of Geoscientists and Engineers: Tulsa, OK, USA, 2007. [Google Scholar]
- Chopra, S.; Marfurt, K.J. Emerging and future trends in seismic attributes. Lead. Edge
**2008**, 27, 298–318. [Google Scholar] [CrossRef] - Taner, M.T.; Koehler, F.; Sheriff, R.E. Complex seismic trace analysis. Geophysics
**1979**, 44, 1041–1063. [Google Scholar] [CrossRef] - Robertson, J.D.; Nogami, H.H. Complex seismic trace analysis of thin beds. Geophysics
**1984**, 49, 344–352. [Google Scholar] [CrossRef] - Barnes, A.E. The calculation of instantaneous frequency and instantaneous bandwidth. Geophysics
**1992**, 57, 1520–1524. [Google Scholar] [CrossRef] - Barnes, A.E. Weighted average seismic attributes. Geophysics
**2000**, 65, 275–285. [Google Scholar] [CrossRef] - Huang, Y.P.; Dong, S.H.; Geng, J.H. Ordovician limestone aquosity prediction using nonlinear seismic attributes: Case from the Xutuan coal mine. Appl. Geophys.
**2009**, 6, 359–366. [Google Scholar] [CrossRef] - Huang, Y.P.; Dong, S.H.; Zheng, D.M.; Xie, H.W.; Qi, X.M. Ordovician Limestone Aquosity Prediction Using EMD and Nonlinear Seismic Attributes; China University of Mining and Technology Press: Xuzhou, China, 2014. [Google Scholar]
- Malekian, R.; Bogatinoska, D.C.; Karadimce, A.; Trengoska, J.; Nyako, W.A. A Novel Smart ECO model for Energy Consumption Optimization. Elektronika ir Elektrotechnika
**2015**, 21, 75–80. [Google Scholar] [CrossRef]

**Figure 1.**Analysis results of a simple artificial signal using empirical mode decomposition (EMD): (

**a**) the signal; (

**b**) IMF1 of the signal; (

**c**) IMF2 of the signal; and (

**d**) IMF3 of the signal.

**Figure 2.**Analysis results of the simple artificial signal using complementary ensemble empirical mode decomposition (CEEMD): (

**a**) the signal; (

**b**) IMF1 of the signal; (

**c**) IMF2 of the signal; and (

**d**) IMF3 of the signal.

**Figure 3.**Analysis results of the simple artificial signal with 15% noise using CEEMD: (

**a**) the signal; (

**b**) IMF1 of the signal; (

**c**) IMF2 of the signal; and (

**d**) IMF3 of the signal.

**Figure 5.**Analysis results of the synthetic seismic record using EMD: (

**a**) the synthetic seismic record with 15% noise; (

**b**) IMF1 of the record; (

**c**) IMF2 of the record; and (

**d**) IMF3 of the record.

**Figure 6.**Analysis results of the synthetic seismic record using CEEMD: (

**a**) the synthetic seismic record with 15% noise; (

**b**) IMF1 of the record; (

**c**) IMF2 of the record; and (

**d**) IMF3 of the record.

**Figure 7.**White Gaussian noise and IMF1: (

**a**) white Gaussian noise; (

**b**) IMF1 of EMD; (

**c**) IMF1 of CEEMD.

**Figure 10.**Results of EMD: (

**a**) IMF1 of original seismic data; (

**b**) IMF2 of original seismic data; (

**c**) IMF3 of original seismic data.

**Figure 11.**Results of CEEMD: (

**a**) IMF1of original seismic data; (

**b**) IMF2 of original seismic data; (

**c**) IMF3 of original seismic data.

**Figure 12.**The instantaneous attributes of IMF2. (

**a**) the instantaneous amplitude of IMF2; (

**b**) the instantaneous frequency of IMF2; (

**c**) the instantaneous phase of IMF2.

Method | IMF1 vs. Noise | IMF2 vs. Synthetic Record |
---|---|---|

EMD | 0.8364 | 0.7367 |

CEEMD | 0.8764 | 0.9201 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Huang, Y.; Di, H.; Malekian, R.; Qi, X.; Li, Z.
Noncontact Measurement and Detection of Instantaneous Seismic Attributes Based on Complementary Ensemble Empirical Mode Decomposition. *Energies* **2017**, *10*, 1655.
https://doi.org/10.3390/en10101655

**AMA Style**

Huang Y, Di H, Malekian R, Qi X, Li Z.
Noncontact Measurement and Detection of Instantaneous Seismic Attributes Based on Complementary Ensemble Empirical Mode Decomposition. *Energies*. 2017; 10(10):1655.
https://doi.org/10.3390/en10101655

**Chicago/Turabian Style**

Huang, Yaping, Haibin Di, Reza Malekian, Xuemei Qi, and Zhixiong Li.
2017. "Noncontact Measurement and Detection of Instantaneous Seismic Attributes Based on Complementary Ensemble Empirical Mode Decomposition" *Energies* 10, no. 10: 1655.
https://doi.org/10.3390/en10101655