Influence of Eye Movements on Academic Performance: A Bibliometric and Citation Network Analysis
Abstract
:Introduction
Methods
Database
Data Analysis
Results
Description of the Publications
Clustering Function
Core Function
Discussion
Conflicts of Interest
References
- Alvarez, T. L., V. R. Vicci, Y. Alkan, E. H. Kim, S. Gohel, A. M. Barrett, N. Chiaravalloti, and B. B. Biswal. 2010. Vision therapy in adults with convergence insufficiency: Clinical and functional magnetic resonance imaging measures. Optometry and Vision Science: Official Publication of the American Academy of Optometry 87, 12: E985–E1002. [Google Scholar] [CrossRef]
- Ashby, J., K. Rayner, and C. Clifton. 2005. Eye movements of highly skilled and average readers: Differential effects of frequency and predictability. The Quarterly journal of experimental psychology. A, Human Experimental Psychology 58, 6: 1065–1086. [Google Scholar] [CrossRef] [PubMed]
- Ballard, D. H., M. M. Hayhoe, and J. B. Pelz. 1995. Memory representations in natural tasks. Journal of Cognitive Neuroscience 7, 1: 66–80. [Google Scholar] [CrossRef]
- Barnes, G. R. 2008. Cognitive processes involved in smooth pursuit eye movements. Brain and Cognition 68, 3: 309–326. [Google Scholar] [CrossRef] [PubMed]
- Beelders, T., and J. P. Plessis. 2016. Syntax highlighting as an influencing factor when reading and comprehending source code. Journal of Eye Movement Research 9, 1: 2207–2219. [Google Scholar] [CrossRef]
- Bertera, J. H., and K. Rayner. 2000. Eye movements and the span of the effective stimulus in visual search. Perception & Psychophysics 62, 3: 576–585. [Google Scholar]
- Bilbao, C., and D. P. Piñero. 2020. Clinical Characterization of Oculomotricity in Children with and without Specific Learning Disorders. Brain Sciences 10, 11: 836. [Google Scholar] [CrossRef]
- Bilbao, C., and D. P. Piñero. 2020. Diagnosis of oculomotor anomalies in children with learning disorders. Clinical & Experimental Optometry 103, 5: 597–609. [Google Scholar]
- Birch, E. E., and K. R. Kelly. 2017. Pediatric ophthalmology and childhood reading difficulties: Amblyopia and slow reading. Journal of AAPOS: The Official Publication of the American Association for Pediatric Ophthalmology and Strabismus 21, 6: 442–444. [Google Scholar] [CrossRef]
- Biswal, A. K. 2013. An absolute index (Ab-index) to measure a researcher’s useful contributions and productivity. PLoS ONE 8, 12: e84334. [Google Scholar] [CrossRef]
- Borges, M. T., E. G. Fernandes, and M. I. Coco. 2020. Age-related differences during visual search: The role of contextual expectations and cognitive control mechanisms. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition 27, 4: 489–516. [Google Scholar] [CrossRef] [PubMed]
- Borji, A., and L. Itti. 2013. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1: 185–207. [Google Scholar] [CrossRef]
- Bosse, M. L., and S. Valdois. 2009. Influence of the visual attention span on child reading performance: A cross-sectional study. Journal of Research in Reading 32: 230–253. [Google Scholar] [CrossRef]
- Christen, M., and M. Abegg. 2016. The Effect of Magnification and Contrast on Reading Performance in Different Types of Simulated Low Vision. Journal of Eye Movement Research 10, 2. [Google Scholar] [CrossRef]
- Deubel, H., and W. X. Schneider. 1996. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research 36, 12: 1827–1837. [Google Scholar] [CrossRef] [PubMed]
- Dodge, R. 1903. Five types of eye movement in the horizontal meridian plane of the field of regard. American Journal of Physiology 8: 307–329. [Google Scholar] [CrossRef]
- Everatt, J., and G. Underwood. 1994. Individual differences in reading subprocesses: Relationships between reading ability, lexical access, and eye movement control. Language and Speech 37, Pt 3: 283–297. [Google Scholar] [CrossRef]
- Everling, S., and B. Fischer. 1998. The antisaccade: A review of basic research and clinical studies. Neuropsychologia 36, 9: 885–899. [Google Scholar] [CrossRef]
- Feis, A., A. Lallensack, E. Pallante, M. Nielsen, N. Demarco, and B. Vasudevan. 2021. Reading Eye Movements Performance on iPad vs Print Using a Visagraph. Journal of eye Movement Research 14, 2. [Google Scholar] [CrossRef]
- Foulsham, T. 2015. Eye movements and their functions in everyday tasks. Eye (London, England) 29, 2: 196–199. [Google Scholar] [CrossRef]
- Gegenfurtner, A., E. Lehtinen, and R. Säljö. 2011. Expertise differences in the comprehension of visualizations: A meta-analysis of eye-tracking research in professional domains. Educational Psychology Review. 23, 523–552. [Google Scholar] [CrossRef]
- Gidfol, K., A. Wallin, R. Dewhurst, and K. Holmqvist. 2013. Using Eye Tracking to Trace a Cognitive Process: Gaze Behaviour During Decision Making in a Natural Environment. Journal of Eye Movement Research 6, 1. [Google Scholar]
- González, C. M. 2009. Análisis de citación y de redes sociales para el estudio del uso de revistas en centros de investigación: An approach to the development of collections. Ciência da Informção 38, 2: 46–55. [Google Scholar] [CrossRef]
- Häikiö, T., R. Bertram, J. Hyönä, and P. Niemi. 2009. Development of the letter identity span in reading: Evidence from the eye movement moving window paradigm. Journal of Experimental Child Psychology 102, 2: 167–181. [Google Scholar] [CrossRef] [PubMed]
- Haist, F., J. H. Wazny, E. Toomarian, and M. Adamo. 2015. Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement. Human Brain Mapping 36, 2: 804–826. [Google Scholar] [CrossRef] [PubMed]
- Hayhoe, M. M., A. Shrivastava, R. Mruczek, and J. B. Pelz. 2003. Visual memory and motor planning in a natural task. Journal of Vision 3, 1: 49–63. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Torre, D., and H. Yuh-Shan. 2021. A Bibliometric Analysis of Publications in the Web of Science Category of Educational Psychology in the Last Two Decades. Psicología Educativa 27, 2: 101–113. [Google Scholar] [CrossRef]
- Hilton, C., S. Miellet, T. J. Slattery, and J. Wiener. 2020. Are age-related deficits in route learning related to control of visual attention? Psychological Research 84, 6: 1473–1484. [Google Scholar] [CrossRef]
- Hindmarsh, G. P., A. A. Black, S. L. White, S. Hopkins, and J. M. Wood. 2021. Eye movement patterns and reading ability in children. Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists) 41, 5: 1134–1143. [Google Scholar]
- Hollingworth, A., and J. M. Henderson. 2002. Accurate visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology: Human Perception and Performance 28, 1: 113–136. [Google Scholar] [CrossRef]
- Hopkins, S., A. A. Black, S. White, and J. M. Wood. 2019. Visual information processing skills are associated with academic performance in Grade 2 school children. Acta Ophthalmologica 97, 8: e1141–e1148. [Google Scholar] [CrossRef] [PubMed]
- Itti, L., and C. Koch. 2000. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 10–12: 1489–1506. [Google Scholar] [CrossRef] [PubMed]
- Jared, D., B. A. Levy, and K. Rayner. 1999. The role of phonology in the activation of word meanings during reading: Evidence from proofreading and eye movements. Journal of experimental psychology. General 128, 3: 219–264. [Google Scholar] [CrossRef]
- Kirk, H. E., K. Gray, D. M. Riby, J. Taffe, and K. M. Cornish. 2017. Visual attention and academic performance in children with developmental disabilities and behavioural attention deficits. Developmental Science 20, 6. [Google Scholar] [CrossRef]
- König, P., N. Wilming, T. Kietzmann, J. Ossandón, S. Onat, B. Ehinger, R. Gameiro, and K. Kaspar. 2016. Eye movements as a window to cognitive processes. Journal of Eye Movement Research 9, 5. [Google Scholar] [CrossRef]
- Konstantopoulos, P., P. Chapman, and D. Crundall. 2010. Driver’s visual attention as a function of driving experience and visibility. Using a driving simulator to explore drivers’ eye movements in day, night and rain driving. Accident; analysis and prevention 42, 3: 827–834. [Google Scholar] [CrossRef]
- Krieber, M., K. D. Bartl-Pokorny, F. B. Pokorny, C. Einspieler, A. Langmann, C. Körner, T. Falck-Ytter, and P. B. Marschik. 2016. The Relation between Reading Skills and Eye Movement Patterns in Adolescent Readers: Evidence from a Regular Orthography. PLoS ONE 11, 1: e0145934. [Google Scholar] [CrossRef] [PubMed]
- Kruger, J., E. Hefer-Jordaan, and G. Matthew. 2014. Attention distribution and cognitive load in a subtitled academic lecture: L1 vs. L2. Journal of Eye Movement Research 7, 5: 1–15. [Google Scholar] [CrossRef]
- Kowler, E., E. Anderson, B. Dosher, and E. Blaser. 1995. The role of attention in the programming of saccades. Vision Research 35, 13: 1897–1916. [Google Scholar] [CrossRef]
- Magyari, L., A. Mangen, A. Kuzmičová, A. M. Jacobs, and J. Lüdtke. 2020. Eye movements and mental imagery during reading of literary texts with different narrative styles. Journal of Eye Movement Research 13, 3. [Google Scholar] [CrossRef]
- Molina, R., B. Redondo, J. Vera, J. A. García, A. MuñozHoyos, and R. Jiménez. 2020. Children with Attention-deficit/Hyperactivity Disorder Show an Altered Eye Movement Pattern during Reading. Optometry and Vision Science: Official Publication of the American Academy of Optometry 97, 4: 265–274. [Google Scholar] [CrossRef] [PubMed]
- Moore, T., and M. Fallah. 2001. Control of eye movements and spatial attention. Proceedings of the National Academy of Sciences of the United States of America 98, 3: 1273–1276. [Google Scholar] [CrossRef]
- Munoz, D. P., J. R. Broughton, J. E. Goldring, and I. T. Armstrong. 1998. Age-related performance of human subjects on saccadic eye movement tasks. Experimental Brain Research 121, 4: 391–400. [Google Scholar] [CrossRef] [PubMed]
- Najemnik, J., and W. S. Geisler. 2005. Optimal eye movement strategies in visual search. Nature 434, 7031: 387–391. [Google Scholar] [CrossRef]
- Navalpakkam, V., and L. Itti. 2005. Modeling the influence of task on attention. Vision Research 45, 2: 205–231. [Google Scholar] [CrossRef] [PubMed]
- Narayanasamy, S., S. J. Vincent, G. P. Sampson, and J. M. Wood. 2015. Simulated astigmatism impairs academic-related performance in children. Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists) 35, 1: 8–18. [Google Scholar]
- Natsuhara, T., T. Kato, M. Nakayama, T. Yoshida, R. Sasaki, T. Matsutake, and T. Asai. 2020. DecisionMaking While Passing and Visual Search Strategy During Ball Receiving in Team Sport Play. Perceptual and Motor Skills 127, 2: 468–489. [Google Scholar] [CrossRef]
- Ohl, S., and M. Rolfs. 2018. Saccadic selection of stabilized items in visuospatial working memory. Consciousness and Cognition 64: 32–44. [Google Scholar] [CrossRef]
- Rao, R. P., G. J. Zelinsky, M. M. Hayhoe, and D. H. Ballard. 2002. Eye movements in iconic visual search. Vision Research 42, 11: 1447–1463. [Google Scholar] [CrossRef]
- Ralph, J. R., L. D. Hager, and H. Christine. 1994. Prefrontal cognitive processes: Working memory and inhibition in the antisaccade task. Journal of Experimental Psychology: General 123, 4: 374–393. [Google Scholar]
- Rayner, K. 1998. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin 124, 3: 372–422. [Google Scholar] [CrossRef]
- Rayner, K., T. J. Slattery, and N. N. Bélanger. 2010. Eye movements, the perceptual span, and reading speed. Psychonomic Bulletin & Review 17, 6: 834–839. [Google Scholar]
- Reddy, A., R. Mani, A. Selvakumar, and J. R. Hussaindeen. 2020. Reading eye movements in traumatic brain injury. Journal of Optometry 13, 3: 155–162. [Google Scholar] [CrossRef]
- Savelsbergh, G. J., A. M. Williams, J. Van der Kamp, and P. Ward. 2002. Visual search, anticipation and expertise in soccer goalkeepers. Journal of Sports Sciences 20, 3: 279–287. [Google Scholar] [CrossRef] [PubMed]
- Schall, J. D. 1991. Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys. Journal of Neurophysiology 66, 2: 530–558. [Google Scholar] [CrossRef]
- Segen, V., M. N. Avraamides, T. J. Slattery, and J. M. Wiener. 2021. Age-related differences in visual encoding and response strategies contribute to spatial memory deficits. Memory & Cognition 49, 2: 249–264. [Google Scholar]
- Seung Won, P., and K. ChanMin. 2015. The effects of a virtual tutee system on academic reading engagement in a college classroom. Educational Technology Research and Development 64, 2. [Google Scholar]
- Shadlen, M. N., and W. T. Newsome. 2001. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology 86, 4: 1916–1936. [Google Scholar] [CrossRef]
- Smidekova, Z., M. Janik, E. Minarikova, and K. Holmqvist. 2018. Teachers’ gaze over space and time in a real-world classroom. Journal of Eye Movement Research 13, 4. [Google Scholar] [CrossRef]
- Stewart, E., and A. C. Schütz. 2018. Attention modulates trans-saccadic integration. Vision Research 142: 1–10. [Google Scholar] [CrossRef]
- Tatler, B. W., M. M. Hayhoe, M. F. Land, and D. H. Ballard. 2011. Eye guidance in natural vision: Reinterpreting salience. Journal of Vision 11, 5: 5. [Google Scholar] [CrossRef]
- Van Eck, N. J., and L. Waltman. 2014. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. Journal of Informetrics 8: 802–823. [Google Scholar] [CrossRef]
- Vater, C., A. Williams, and E. Hossner. 2019. What do we see out of the corner of our eye? The role of visual pivots and gaze anchors in sport. International Review of Sport and Exercise Psychology 13, 1: 1–23. [Google Scholar] [CrossRef]
- Vikesdal, G., and T. Langaas. 2016. Saccade Latency and Fixation Stability: Repeatability and Reliability. Journal of Eye Movement Research 9, 2. [Google Scholar]
- Vinker, P. 2019. Core journals and elite subsets in scientometrics. Scientometrics 121: 241–259. [Google Scholar] [CrossRef]
- Williams, A. M., and K. Davids. 1998. Visual search strategy, selective attention, and expertise in soccer. Research Quarterly for Exercise and Sport 69, 2: 111–128. [Google Scholar] [CrossRef]
- Wood, J. M., A. A. Black, S. Hopkins, and S. White. 2018. Vision and academic performance in primary school children. Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists) 38, 5: 516–524. [Google Scholar]
- Zihl, J. 1995. Visual scanning behavior in patients with homonymous hemianopia. Neuropsychologia 33, 3: 287–303. [Google Scholar] [CrossRef]
Author | Title | Journal | Year | Citation Index | Links |
---|---|---|---|---|---|
Deubel et al. | Saccade target selection and object recognition: evidence for a common attentional mechanism. | Vision Res. 1996; 36(12):1827-37. | 1998 | 213 | 137 |
Koweler et al. | The role of attention in the programming of saccades | Vision Res. 1995; 35(13):1897-916 | 1995 | 168 | 121 |
Itti et al. | A saliency-based search mechanism for overt and covert shifts of visual attention | Vision Res. 2000; 40(10-12):1489-506. | 2000 | 147 | 81 |
Najemnik et al. | Optimal eye movement strategies in visual search | Nature. 2005; 434(7031):387-91. | 2005 | 84 | 69 |
Munoz et al. | Age-related performance of human subjects on saccadic eye movement tasks | Exp Brain Res. 1998; 121(4):391-400 | 1998 | 77 | 41 |
Hollingworth et al. | Accurate visual memory for previously attended objects in natural scenes | J. Exp. Psychol. Hum. Percept. Perform. 2002; 28(1), 113–136. | 2002 | 58 | 41 |
Ballard et al. | Memory Representations in Natural Tasks | J Cogn Neurosci.1995; 7(1):66-80 | 1995 | 54 | 34 |
Tatler et al. | Eye guidance in natural vision: Reinterpreting salience | J Vis. 2011; 11(5):5. | 2011 | 52 | 43 |
Everling et al. | The antisaccade: a review of basic research and clinical studies | Neuropsychologia. 1998;36(9):885-99. | 1998 | 51 | 33 |
Moore et al. | Control of eye movements and spatial attention | Proc Natl Acad Sci U S A. 2001;98(3):1273-6. | 2001 | 51 | 36 |
Savelsbergh et al. | Visual search, anticipation and expertise in soccer goalkeepers | J Sports Sci. 2002 Mar;20(3):279-87. | 2002 | 48 | 33 |
Borji et al. | State-of-the-Art in Visual Attention Modeling | IEEE Trans Pattern Anal Mach Intell. 2013;35(1):185-207. | 2013 | 48 | 23 |
Rao et al. | Eye movements in iconic visual search | Vision Res. 2002;42(11):1447-63. | 2002 | 46 | 39 |
Konstantopoulos et al. | Driver’s visual attention as a function of driving experience and visibility. Using a driving simulator to explore drivers’ eye movements in day, night and rain driving | Accid Anal Prev. 2010;42(3):827-34. | 2010 | 44 | 15 |
Bertera et al. | Eye movements and the span of the effective stimulus in visual search | Percept Psychophys. 2000;62(3):576-85. | 2000 | 41 | 32 |
Navalpakkam et al. | Modeling the influence of task on attention | Vision Res. 2005 Jan;45(2):205-31. | 2005 | 40 | 28 |
Gegenfurtner et al. | Expertise Differences in the Comprehension of Visualizations: a Meta-Analysis of Eye-Tracking Research in Professional Domains | Educ Psychol Rev.2011; 23, 523–552. | 2011 | 39 | 33 |
Williams et al. | Visual Search Strategy, Selective Attention, and Expertise in Soccer | Res Q Exerc Sport. 1998;69(2):111-28 | 1998 | 38 | 27 |
Hayhoe et al. | Visual memory and motor planning in a natural task | J Vis. 2003;3(1):49-63. | 2003 | 38 | 26 |
Barnes et al. | Cognitive processes involved in smooth pursuit eye movements | Brain Cogn. 2008; 68(3):309-26. | 2008 | 38 | 31 |
Group | Colour | Main Countries | Publications | Centrality | Degree | Half-Life | Connections |
---|---|---|---|---|---|---|---|
1° | Red | USA | 1492 | 0.55 | 57 | 34.5 | 519 |
2° | Green | Germany | 574 | 0.17 | 39 | 21.5 | 355 |
3° | Blue | Switzerland | 129 | 0.06 | 21 | 17.5 | 98 |
4° | Yellow | Scotland | 82 | 0.06 | 23 | 13.5 | 92 |
5° | Violet | England | 655 | 0.44 | 53 | 21.5 | 414 |
Category | Frequency | Centrality | Degree | Half-Life |
---|---|---|---|---|
Psychology | 1525 | 0.11 | 57 | 21.5 |
Neurosciences & Neurology | 1502 | 0.15 | 63 | 18.5 |
Neurosciences | 1369 | 0.11 | 52 | 17.5 |
Psychology, Experimental | 832 | 0.01 | 29 | 21.5 |
Ophthalmology | 808 | 0.02 | 23 | 34.5 |
Engineering | 443 | 0.29 | 84 | 24.5 |
Computer Science | 427 | 0.20 | 74 | 23.5 |
Clinical Neurology | 253 | 0.08 | 41 | 19.5 |
Science &Technology-Other Topics | 231 | 0.03 | 20 | 24.5 |
Behavioural Sciences | 230 | 0.05 | 34 | 18.5 |
Category | Frequency | Centrality | Degree | Half-Life | Connections |
---|---|---|---|---|---|
University of Toronto | 78 | 0.00 | 29 | 13.5 | 531 |
New York University | 68 | 0.00 | 31 | 24.5 | 675 |
University of Tubingen | 68 | 0.00 | 16 | 15.5 | 617 |
Harvard University | 64 | 0.00 | 38 | 9.5 | 646 |
University College of London | 56 | 0.00 | 37 | 6.5 | 368 |
University of Utrecht | 53 | 0.00 | 13 | 13.5 | 454 |
University of Illinois | 50 | 0.00 | 16 | 9.5 | 525 |
University of Munich | 48 | 0.00 | 22 | 7.5 | 899 |
University California Berkeley | 48 | 0.00 | 19 | 17.5 | 245 |
Le Centre national de la recherche scientifique | 47 | 0.00 | 21 | 14.5 | 345 |
Journal | Total Publications | Impact Factor (2020) | Quartile Score | SJR (2020) | Citations/Docs (2 Years) | Total Citations (2020) | H Index | Country |
---|---|---|---|---|---|---|---|---|
Journal of vision (open access- CC BY or a CC BY-NC-ND license) | 214 | 2.15 | Q3 | 1.126 | 3.838 | 2855 | 113 | United States |
Vision Research | 213 | 2.82 | Q3 | 1.127 | 3.744 | 2459 | 164 | United Kingdom |
Journal of neurophysiology | 126 | 2.71 | Q3 | 1.302 | 5.234 | 7092 | 245 | United States |
Experimental brain research | 121 | 1.97 | Q4 | 0.782 | 3.733 | 3762 | 172 | Germany |
Plos One (open access- CC BY license) | 120 | 3.79 | Q2 | 0.99 | 6.222 | 379308 | 332 | United States |
Journal of Neuroscience | 85 | 6.99 | Q1 | 3.483 | 11.210 | 32012 | 455 | United States |
Neuropsychologia | 85 | 3.56 | Q2 | 1.439 | 3.033 | 3228 | 206 | England |
Investigative Ophthalmology & Visual Science (open access- CC BY or a CC BY-NC-ND license) | 67 | 4.85 | Q1 | 1.935 | 8.22 | 17287 | 218 | United States |
Attention Perception & Psychophysics | 65 | 2.31 | Q3 | 1.151 | 3.748 | 2321 | 116 | United States |
Journal of Experimental Psychology: Applied | 57 | 2.96 | Q2 | 1.004 | 4.448 | 881 | 84 | United States |
Optometry and Vision Science | 54 | 1.97 | Q3 | 0.779 | 1.522 | 769 | 97 | United States |
Frontiers in Psychology (open access- CC-BY license) | 48 | 3.62 | Q2 | 0.947 | 2.782 | 24199 | 110 | Switzerland |
Visual Cognition | 46 | 1.89 | Q3 | 0.797 | 1.365 | 270 | 81 | United Kingdom |
Perception | 45 | 1.78 | Q4 | 0.619 | 1.192 | 330 | 91 | United States |
Scientific Reports (open access- CC-BY license) | 40 | 5.13 | Q1 | 1.24 | 4.13 | 282734 | 213 | United Kingdom |
Journal of eye Movement Research (open access- CC-BY license) | 40 | 1.25 | Q4 | 0.25 | 1.124 | 142 | 20 | Switzerland |
Transportation Research part ftraffic Psychology and Behaviour | 38 | 3.78 | Q2 | 1.231 | 3.903 | 3204 | 94 | United Kingdom |
Frontiers in Human Neuroscience (open access- CC-BY license) | 33 | 3.98 | Q3 | 1.129 | 3.154 | 5657 | 114 | Switzerland |
Acta Psychologica | 32 | 2.07 | Q4 | 0.865 | 1.656 | 850 | 97 | Netherlands |
Cognition | 28 | 4.33 | Q1 | 2.08 | 3.549 | 2744 | 187 | Netherlands |
Keyword | Frequency | Degree | Total Link Strength |
---|---|---|---|
Eye-movements | 1444 | 68 | 14039 |
Attention | 859 | 96 | 6935 |
Performance | 781 | 117 | 5640 |
Saccadic Eye movements | 755 | 106 | 5944 |
Perception | 511 | 91 | 3997 |
Saccades | 365 | 116 | 3188 |
Information | 349 | 88 | 2780 |
Vision | 303 | 90 | 2368 |
Visual search | 292 | 98 | 2440 |
Visual-attention | 253 | 93 | 1996 |
Memory | 237 | 102 | 1855 |
Working memory | 235 | 65 | 1772 |
Eye tracking | 231 | 41 | 1320 |
Model | 229 | 64 | 166 |
Search | 219 | 68 | 1748 |
Movements | 217 | 79 | 1552 |
Fixation | 201 | 74 | 1516 |
Binocular vision | 199 | 86 | 1415 |
Recognition | 186 | 70 | 1457 |
Integration | 185 | 97 | 1521 |
© 2022 by the authors. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Salgado-Fernández, A.; Vázquez-Amor, A.; Alvarez-Peregrin, C.; Martinez-Perez, C.; Villa-Collar, C.; Ángel Sánchez-Tena, M. Influence of Eye Movements on Academic Performance: A Bibliometric and Citation Network Analysis. J. Eye Mov. Res. 2022, 15, 1-18. https://doi.org/10.16910/jemr.15.4.4
Salgado-Fernández A, Vázquez-Amor A, Alvarez-Peregrin C, Martinez-Perez C, Villa-Collar C, Ángel Sánchez-Tena M. Influence of Eye Movements on Academic Performance: A Bibliometric and Citation Network Analysis. Journal of Eye Movement Research. 2022; 15(4):1-18. https://doi.org/10.16910/jemr.15.4.4
Chicago/Turabian StyleSalgado-Fernández, Adrián, Ana Vázquez-Amor, Cristina Alvarez-Peregrin, Clara Martinez-Perez, Cesar Villa-Collar, and Miguel Ángel Sánchez-Tena. 2022. "Influence of Eye Movements on Academic Performance: A Bibliometric and Citation Network Analysis" Journal of Eye Movement Research 15, no. 4: 1-18. https://doi.org/10.16910/jemr.15.4.4
APA StyleSalgado-Fernández, A., Vázquez-Amor, A., Alvarez-Peregrin, C., Martinez-Perez, C., Villa-Collar, C., & Ángel Sánchez-Tena, M. (2022). Influence of Eye Movements on Academic Performance: A Bibliometric and Citation Network Analysis. Journal of Eye Movement Research, 15(4), 1-18. https://doi.org/10.16910/jemr.15.4.4