Ripples of Oil Shocks: How Jordan’s Sectors React
Abstract
:1. Introduction
2. Methodology
2.1. Oil Price Decomposition
2.2. The TVP-VAR Connectedness Approach
2.3. Data and Descriptive Statistics
3. Empirical Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adekoya, O. B., Akinseye, A. B., Antonakakis, N., Chatziantoniou, I., Gabauer, D., & Oliyide, J. (2022). Crude oil and Islamic sectoral stocks: Asymmetric TVP-VAR connectedness and investment strategies. Resources Policy, 78, 102877. [Google Scholar]
- Ajmi, A. N., El-Montasser, G., Hammoudeh, S., & Nguyen, D. K. (2014). Oil prices and MENA stock markets: New evidence from nonlinear and asymmetric causalities during and after the crisis period. Applied Economics, 46(18), 2167–2177. [Google Scholar]
- Akhtaruzzaman, M., Boubaker, S., & Sensoy, A. (2021). Financial contagion during COVID-19 crisis. Finance Research Letters, 38, 101604. [Google Scholar] [CrossRef]
- Antonakakis, N., Chatziantoniou, I., & Filis, G. (2017). Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest. International Review of Financial Analysis, 50, 1–26. [Google Scholar]
- Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84. [Google Scholar]
- Bastianin, A., Conti, F., & Manera, M. (2016). The impacts of oil price shocks on stock market volatility: Evidence from the G7 countries. Energy Policy, 98, 160–169. [Google Scholar]
- Baumeister, C., & Peersman, G. (2013). Time-varying effects of oil supply shocks on the US economy. American Economic Journal: Macroeconomics, 5(4), 1–28. [Google Scholar] [CrossRef]
- Bouri, E. (2015a). A broadened causality in variance approach to assess the risk dynamics between crude oil prices and the Jordanian stock market. Energy Policy, 85, 271–279. [Google Scholar]
- Bouri, E. (2015b). Oil volatility shocks and the stock markets of oil-importing MENA economies: A tale from the financial crisis. Energy Economics, 51, 590–598. [Google Scholar]
- Bouri, E., Awartani, B., & Maghyereh, A. (2016). Crude oil prices and sectoral stock returns in Jordan around the Arab uprisings of 2010. Energy Economics, 56, 205–214. [Google Scholar]
- Broadstock, D. C., & Filis, G. (2014). Oil price shocks and stock market returns: New evidence from the United States and China. Journal of International Financial Markets, Institutions and Money, 33, 417–433. [Google Scholar]
- Caporale, G. M., Çatık, A. N., Kısla, G. S. H., Helmi, M. H., & Akdeniz, C. (2022). Oil prices and sectoral stock returns in the BRICS-T countries: A time-varying approach. Resources Policy, 79, 103044. [Google Scholar]
- Chen, S. S. (2009). Revisiting the inflationary effects of oil prices. The Energy Journal, 30(4), 141–154. [Google Scholar]
- Choi, P., & Nam, K. (2008). Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution. Journal of Empirical Finance, 15(1), 41–63. [Google Scholar] [CrossRef]
- Demirer, R., Ferrer, R., & Shahzad, S. J. H. (2020). Oil price shocks, global financial markets and their connectedness. Energy Economics, 88, 104771. [Google Scholar]
- Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158–171. [Google Scholar]
- Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. [Google Scholar]
- Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134. [Google Scholar]
- Driesprong, G., Jacobsen, B., & Maat, B. (2008). Striking oil: Another puzzle? Journal of Financial Economics, 89(2), 307–327. [Google Scholar]
- Filis, G. (2010). Macro economy, stock market and oil prices: Do meaningful relationships exist among their cyclical fluctuations? Energy Economics, 32(4), 877–886. [Google Scholar]
- Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. The Journal of Finance, 57(5), 2223–2261. [Google Scholar] [CrossRef]
- Gomez-Gonzalez, J. E., Hirs Garzon, J., & Uribe, J. M. (2020). Giving and receiving: Exploring the predictive causality between oil prices and exchange rates. International Finance, 23(1), 175–194. [Google Scholar]
- Guo, F., Chen, C. R., & Huang, Y. S. (2011). Markets contagion during financial crisis: A regime-switching approach. International Review of Economics & Finance, 20(1), 95–109. [Google Scholar]
- Hamilton, J. D. (1983). Oil and the macroeconomy since World War II. Journal of Political Economy, 91(2), 228–248. [Google Scholar] [CrossRef]
- Hamilton, J. D. (2009). Causes and consequences of the oil shock of 2007-08 (No. w15002). National Bureau of Economic Research. [Google Scholar]
- Kang, W., Ratti, R. A., & Yoon, K. H. (2015). Time-varying effect of oil market shocks on the stock market. Journal of Banking & Finance, 61, S150–S163. [Google Scholar]
- Khalfaoui, R., Sarwar, S., & Tiwari, A. K. (2019). Analysing volatility spillover between the oil market and the stock market in oil-importing and oil-exporting countries: Implications on portfolio management. Resources Policy, 62, 22–32. [Google Scholar] [CrossRef]
- Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. American Economic Review, 99(3), 1053–1069. [Google Scholar] [CrossRef]
- Li, S. F., Zhu, H. M., & Yu, K. (2012). Oil prices and stock market in China: A sector analysis using panel cointegration with multiple breaks. Energy Economics, 34(6), 1951–1958. [Google Scholar] [CrossRef]
- Maghyereh, A., & Abdoh, H. (2021). The impact of extreme structural oil-price shocks on clean energy and oil stocks. Energy, 225, 120209. [Google Scholar] [CrossRef]
- Maghyereh, A., & Abdoh, H. (2022). Extreme dependence between structural oil shocks and stock markets. Resources Policy, 76, 102626. [Google Scholar] [CrossRef]
- Maghyereh, A., & Ziadat, S. A. (2024). Oil price shocks and financial stress: Who is the influencer? International Journal of Finance & Economics, 29(4), 4443–4461. [Google Scholar]
- Mensi, W. (2019). Global financial crisis and co-movements between oil prices and sector stock markets in Saudi Arabia: A VaR based wavelet. Borsa Istanbul Review, 19(1), 24–38. [Google Scholar] [CrossRef]
- Mensi, W., Al Rababa’a, A. R., Vo, X. V., & Kang, S. H. (2021a). Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets. Energy Economics, 98, 105262. [Google Scholar] [CrossRef]
- Mensi, W., Al-Yahyaee, K. H., Vo, X. V., & Kang, S. H. (2021b). Modeling the frequency dynamics of spillovers and connectedness between crude oil and MENA stock markets with portfolio implications. Economic Analysis and Policy, 71, 397–419. [Google Scholar] [CrossRef]
- Mensi, W., Ziadat, S. A., Vo, X. V., & Kang, S. H. (2024). Extreme quantile connectedness and spillovers between oil and Vietnamese stock markets: A sectoral analysis. International Journal of Emerging Markets, 19(6), 1586–1625. [Google Scholar] [CrossRef]
- Nandha, M., & Brooks, R. (2009). Oil prices and transport sector returns: An international analysis. Review of Quantitative Finance and Accounting, 33, 393–409. [Google Scholar] [CrossRef]
- Park, J., & Ratti, R. A. (2008). Oil price shocks and stock markets in the US and 13 European countries. Energy Economics, 30(5), 2587–2608. [Google Scholar] [CrossRef]
- Ready, R. C. (2018). Oil prices and the stock market. Review of Finance, 22(1), 155–176. [Google Scholar] [CrossRef]
- Reboredo, J. C., & Rivera-Castro, M. A. (2014). Wavelet-based evidence of the impact of oil prices on stock returns. International Review of Economics & Finance, 29, 145–176. [Google Scholar]
- Sadorsky, P. (2014). Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. Energy Economics, 43, 72–81. [Google Scholar] [CrossRef]
- Salisu, A. A., Raheem, I. D., & Ndako, U. B. (2019). A sectoral analysis of asymmetric nexus between oil price and stock returns. International Review of Economics & Finance, 61, 241–259. [Google Scholar]
- Sevillano, M. C., Jareño, F., López, R., & Esparcia, C. (2024). Connectedness between oil price shocks and US sector returns: Evidence from TVP-VAR and wavelet decomposition. Energy Economics, 131, 107398. [Google Scholar]
- Tiwari, A. K., Jena, S. K., Mitra, A., & Yoon, S. M. (2018). Impact of oil price risk on sectoral equity markets: Implications on portfolio management. Energy Economics, 72, 120–134. [Google Scholar]
- Umar, Z., Jareño, F., & Escribano, A. (2021). Static and dynamic connectedness between oil price shocks and Spanish equities: A sector analysis. The European Journal of Finance, 27(9), 880–896. [Google Scholar]
- Wang, Y., Wu, C., & Yang, L. (2013). Oil price shocks and stock market activities: Evidence from oil-importing and oil-exporting countries. Journal of Comparative Economics, 41(4), 1220–1239. [Google Scholar] [CrossRef]
- Zhang, H., Chen, J., & Shao, L. (2021). Dynamic spillovers between energy and stock markets and their implications in the context of COVID-19. International Review of Financial Analysis, 77, 101828. [Google Scholar]
- Ziadat, S. A., & Maghyereh, A. (2024). Energy profile and oil shocks: A dynamic analysis of their impact on stock markets. Eurasian Economic Review, 14(3), 757–780. [Google Scholar]
- Ziadat, S. A., & McMillan, D. G. (2022). Oil-stock nexus: The role of oil shocks for GCC markets. Studies in Economics and Finance, 39(5), 801–818. [Google Scholar]
- Ziadat, S. A., Mensi, W., & Kang, S. H. (2024). Frequency spillovers between oil shocks and stock markets of top oil-producing and-consuming economies. Energy, 291, 130239. [Google Scholar]
Panel A: Returns | ||||||||
Mean | Variance | Skewness | Ex. Kurtosis | JB | ERS | Q(10) | Q2(10) | |
Fin | 0.04 | 0.14 | −0.395 a | 5.161 a | 1466.29 a | −3.97 a | 53.236 a | 538.105 a |
Serv | 0.02 | 0.14 | −0.262 a | 8.684 a | 4071.41 a | −4.75 a | 26.908 a | 652.108 a |
Ind | 0.064 | 0.2 | −0.276 a | 6.629 a | 2379.87 a | −5.00 a | 28.192 a | 844.429 a |
Sup | 0.068 | 35.2 | 1.627 a | 30.880 a | 51,864.65 a | −9.27 a | 17.450 a | 80.910 a |
Dem | −0.026 | 19.34 | −0.617 a | 6.925 a | 2661.53 a | −11.3 a | 8.466 | 276.600 a |
Risk | 0.08 | 102 | 0.963 a | 4.521 a | 1298.88 a | −4.39 a | 18.723 a | 21.644 a |
Panel B: Volatility | ||||||||
Fin | 0.008 | 0.17 | 6.566 a | 60.060 a | 203,312.66 a | −8.09 a | 538.105 a | 211.423 a |
Serv | 0.006 | 0.05 | 8.882 a | 104.634 a | 605,905.91 a | −9.25 a | 652.108 a | 417.364 a |
Ind | 0.01 | 0.1 | 8.035 a | 94.983 a | 499,184.14 a | −8.75 a | 844.429 a | 412.484 a |
Panel A: Return | |||||||
Fin | Serv | Ind | Sup | Dem | Risk | FROM | |
Fin | 57.34 | 19.00 | 17.83 | 0.86 | 3.00 | 1.97 | 42.66 |
Serv | 18.55 | 56.76 | 19.04 | 0.82 | 3.18 | 1.64 | 43.24 |
Ind | 17.24 | 18.63 | 59.15 | 0.54 | 3.26 | 1.18 | 40.85 |
Sup | 0.99 | 1.16 | 1.21 | 90.93 | 3.65 | 2.05 | 9.07 |
Dem | 3.1 | 3.61 | 3.47 | 3.07 | 81.98 | 4.77 | 18.02 |
Risk | 2.27 | 1.88 | 1.79 | 1.69 | 5.42 | 86.95 | 13.05 |
TO | 42.15 | 44.3 | 43.34 | 6.98 | 18.51 | 11.61 | 166.89 |
Inc.Own | 99.5 | 101.05 | 102.49 | 97.91 | 100.5 | 98.56 | TCI |
NET | −0.5 | 1.05 | 2.49 | −2.09 | 0.5 | −1.44 | 27.81 |
Panel B: Volatility | |||||||
Fin | Serv | Ind | Sup | Dem | Risk | FROM | |
Fin | 58.61 | 16.25 | 12.18 | 1.64 | 8.37 | 2.95 | 41.39 |
Ser | 15.47 | 55.02 | 18.36 | 1.17 | 7.17 | 2.81 | 44.98 |
Ind | 11.47 | 19.7 | 63.12 | 0.75 | 2.45 | 2.52 | 36.88 |
Sup | 0.79 | 0.79 | 0.32 | 92.71 | 3.48 | 1.9 | 7.29 |
Dem | 1.55 | 0.57 | 0.34 | 3.14 | 88.83 | 5.58 | 11.17 |
Risk | 1.7 | 1.55 | 1.58 | 1.56 | 5.47 | 88.14 | 11.86 |
TO | 30.98 | 38.86 | 32.77 | 8.26 | 26.94 | 15.76 | 153.58 |
Inc.Own | 89.59 | 93.87 | 95.89 | 100.97 | 115.77 | 103.9 | TCI: |
NET | −10.41 | −6.13 | −4.11 | 0.97 | 15.77 | 3.9 | 25.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziadat, S.A.; Khasawneh, M. Ripples of Oil Shocks: How Jordan’s Sectors React. J. Risk Financial Manag. 2025, 18, 186. https://doi.org/10.3390/jrfm18040186
Ziadat SA, Khasawneh M. Ripples of Oil Shocks: How Jordan’s Sectors React. Journal of Risk and Financial Management. 2025; 18(4):186. https://doi.org/10.3390/jrfm18040186
Chicago/Turabian StyleZiadat, Salem Adel, and Maher Khasawneh. 2025. "Ripples of Oil Shocks: How Jordan’s Sectors React" Journal of Risk and Financial Management 18, no. 4: 186. https://doi.org/10.3390/jrfm18040186
APA StyleZiadat, S. A., & Khasawneh, M. (2025). Ripples of Oil Shocks: How Jordan’s Sectors React. Journal of Risk and Financial Management, 18(4), 186. https://doi.org/10.3390/jrfm18040186